CMP302 - Game mechanics development project
report

Dannielle smith 2101323

Terminology
“drawing”, the act of pulling a bow back in preparation of it being fired.
“arcing”, move with a curving trajectory.

“stamina”, is a resource that is held by the player, dashing, and drawing the bow costs stamina. the
ability to sustain prolonged physical effort.

“health”,

Summary

A bow mechanic that allows the user to fire arrows in a manner inspired by a popular RPG game,
Monster Hunter: Rise (Capcom, 2021) and other games from the franchise. The system is made up of
several components:

1. Multiple abilities/attack that can be used. Including:

a. ‘Arcing arrow’, an ability that shoots a projectile in an arc to produce an area
of effect on a targeted location.

b. ‘Default arrow’, an ability to shoot a projectile to cause damage to an enemy,
damage will vary depending on how long the bow has been drawn.

C. ‘Special attack/arrow’,
2. Stamina system, where:
a. Stamina is constantly depleted whilst bow is drawn or if dash# is activated, if

fully depleted player can no longer draw for a set amount of time.

b. Player Stamina will be regenerated over time.

3. Health system, where:
a. Stamina is constantly depleted whilst bow is drawn or if dash
b. Player Stamina will be regenerated over time.

A video demonstrating these systems is available here: https://youtu.be/WSQasHO5COw
Requirement Specification

Introduction

Purpose



Many games have an implementation of a spellcasting or ability system. The purpose of this project
was to build a bare-bones and easily extensible implementation of the same, or similar, mechanics
to investigate how that mechanic could be structured in code, and improved upon in a later
implementation.

The project is a basic framework and beginnings of a spell and ability system for any RPG, MMO or
ability-driven game. The components delivered include a spell selection system, casting system,
cooldown system and a test area for spells and their effects. The product is designed to be easily
extensible, so it can be built upon if desired.

/17

This project is the implementation of a bow mechanic build into the player. It allows the use of
different range attacks that could be reused or further built upon later.

Overall Description

Product Perspective

The primary aim of this project was to deliver a working range weapon (bow) system, where each
attack/ability has a unique behaviour#. Other parts of the product, such as the provided mannequins
were provided so that these abilities can be appropriately tested.

Product Functions
Allow the user to choose between multiple ranged abilities.

Displays the player heath and stamina to the user.

Give a 3" party the ability to use from already created abilities to as a base for

1.

2.

3. Allow the user to test the abilities in a enclosed environment with mannequins
4,

different ranged weapons if so desired, or to further develop the current player skill set.

User Classes & Characteristics

This project is made for those familiar with the unreal 5 engine, and can be used as is or be added on
and improved upon for future use. It is up to those who chose how, why, and where this project is
implemented and can be customized to fit the developer’s needs.

Design & Implementation Constraints

Since there is no artist assigned to the project, the developer sourced a free player model from the
unreal marketplace for the player character to use, along with the arrow provided with this pack.
(Find official pack name)

System Features

Ability: Default arrow attack/spawn
Description:

The basic attack the player can use. The bow must first be drawn to be able to trigger the attack, a
crosshair will appear when the bow is drawn. Once triggered an arrow will spawn at a default speed
and be at the targeted location //look up if gravity is affected//, the damage done to the intended



target will be determined by how long the bow is drawn for. After hitting a target, the arrow will also
be ‘stuck’ to the hit surface and disappear after a set period of time.

Priority: 8
Stimulus / response sequences:
For gameplay, this player ability is accessed via combination on the mouse.

For development, the ability blueprint will open the UE5 blueprint editor - and the C++ code will
open Visual Studio.

Functional requirements:

REQ-1: Bow drawn.

This is triggered by an appropriate player input.

REQ-2: Fire input

There must be “fire” or “trigger” input by the player for the arrow to be spawned.
REQ-3: Enough stamina

The player must have an appropriate amount of stamina to keep the bow drawn, if the stamina bar
reaches zero the player is unable to draw the bow until a set amount of time.

Ability: Arcing/AOA arrow attack
Description:

A ranged attack the player can use. The bow must first be drawn to be able to trigger the attack, a
crosshair will appear when the bow is drawn. Then when arcing is activated a projectile line will
appear and the cross hair is removed, this line will show the user the trajectory of the bow and the
area it will affect. Once triggered an arrow will spawn and move to the targeted location, the
damage done to the intended area will set. The arrow will also be ‘stuck’ to the hit surface and
disappear after a set period.

Priority: 8//
Stimulus / response sequences:
For gameplay, this player ability is accessed via combination on the mouse.

For development, the ability blueprint will open the UES5 blueprint editor - and the C++ code will
open Visual Studio.

Functional requirements:

REQ-1: Bow drawn.

This is triggered by an appropriate key bind.

REQ-1: Arcing is activated.

This is triggered by an appropriate key bind.

REQ-2: Fire input

There must be “fire” or “trigger” input by the player for the arrow to be spawned.

REQ-3: Enough stamina



The player must have an appropriate amount of stamina to keep the bow drawn, if the stamina bar
reaches zero the player is unable to draw the bow until a set amount of time.

Ability: Special arrow attack/spawn
Description:

A ranged attack the player can use. The bow must first be drawn to be able to trigger the attack, a
crosshair will appear when the bow is drawn. Once triggered an animation will play, the player
character cannot move or trigger another attack whilst the animation is ongoing, on completion an
arrow will be spawn at a default speed and move towards targeted location, the damage done to the
intended target will be determined by how long the bow is drawn for, this will also be accompanied
by a multiplier. After hitting a target, the arrow will also be ‘stuck’ to the hit surface and disappear
after a set period of time.

Priority: 8
Stimulus / response sequences:
For gameplay, this player ability is accessed via combination on the mouse.

For development, the ability blueprint will open the UES5 blueprint editor - and the C++ code will
open in Visual Studio.

Functional requirements:

REQ-1: Bow drawn.

This is triggered by an appropriate key bind.

REQ-2: Fire input

There must be “fire” or “trigger” input by the player for the arrow to be spawned.
REQ-3: Enough stamina

The player must have an appropriate amount of stamina to keep the bow drawn, if the stamina bar
reaches zero the player is unable to draw the bow until a set amount of time.

Ability: Quick Dash
Description:

The basic movement the player can use will be increased for a short amount of time after the dash
action is triggered, will drain a burst of stamina.

Priority: 4
Stimulus / response sequences:
For gameplay, this player ability is accessed via combination on the mouse.

For development, the ability blueprint will open the UES5 blueprint editor - and the C++ code will
open Visual Studio.

Functional requirements:
REQ-1: Be already moving.
The character must already be in motion.

REQ-2: Dash input



There must be a “dash” input by the player.
REQ-3: Enough stamina

The player must have an appropriate amount of stamina to dash, if the stamina bar reaches zero the
player is unable to dash.

Enemy Mannequin
Description:

A mannequin to be used as practice target in the testing area that responds to the players presence,
moves, and attacks when close. It will follow the player around if in field of vision/detectable area
and attempt to attack.

Priority: 5
Stimulus / response sequences:

For gameplay, the player has no direct control over the dummy. The mannequin will be damaged by
player attacks.

For development, the mannequin blueprint will open the UE5 blueprint editor - and the C++ code
will open Visual Studio.

Functional requirements:

REQ-1: Health

Mannequins all have their own individual health value independent from others.
REQ-2: Damage

Target dummies can receive and apply damage to player.

REQ-3: Display health

Target dummies will display their current health in a health bar above their heads.
REQ-4: Regenerate health over time / respawn.

Target dummies health will regenerate over time and will respawn after death.
REQ-5:Movement

One player is detected by the mannequin the mannequin will independently move towards the
player to attack.

Level Area for testing

Description:

An area for the player to explore and test their abilities in.

Priority: 6

Stimulus / response sequences:

For gameplay, the player will explore this area, but will not be able to leave.
For development, the map file will open in the unreal engine editor.

Functional requirements:



REQ-1: Mannequin enemies
The test area must have a set of enemy mannequins for testing.
REQ-2: Enclosed area

The area must be closed so the player cannot leave the area.

Stamina and health bar Ul

Description:

The stamina and health bar Ul displays the players stamina and health.
Priority: 6

Stimulus / response sequences:

When the player has drawn the bow, the stamina will be constantly depleted, on triggering a dash
stamina will also be removed. The stamina bar will display this response as well as the stamina
regained every tick. This is the same for the health bar but will only be depleted when attacked by

“w_n

the mannequins and regained over time or pressing “e”.

For development, the unreal widget editor will open.

Functional Requirements:

REQ-1: Display health

Displays the variable “health” as a “progress bar” to show the amount of health the player has left.
REQ-2: Display stamina

Displays the variable “stamina” as a “progress bar” to show the amount of stamina the player has
left.

Crosshair Ul

Description:

The Crosshair must display the arrows target direction.
Priority: 7

Stimulus / response sequences:

Will only appear when bow is drawn and not producing a projectile path, otherwise will not be
viewable.

Functional Requirements:
REQ-1: Display

Must show arrow direction and location of where the arrow will be shot at and disappear when not
in use.

Player character/ Archer
Description:

The player character must be able to move around the map according to the player input. The player
must also be able to draw a bow and produce range attacks with it.



Priority: 9
Stimulus / response sequences:

In game, the player character will respond to the correct movement keys (W/A/S/D) to move around
the scene. The player must also be able to respond with user input for other Abilities, for example
drawing the bow will be triggered by holding down the right mouse button.

In editor, the player blueprint will open in the blueprint editor.
Functional requirements:
REQ-1: Respond to input

The player character must respond to input to move and use range attacks.

Other non-functional requirements

Performance requirements

While the game is in play, there must be a stable frame rate for the spells to function correctly. A low
frame rate could cause effects like the fire zone to jump in size, when it should be a smooth
animation. Low frame rates could also delay response to input actions.

Software quality

The software implementation must be kept at a high quality and concise standard. The developer
strongly believes in the KISS principle (KISS) for development. All C++ code will be written with
proper object-orientation in mind, but also towards the Unreal Engine 4 online coding standard. (
Coding Standard)

While the development of this project was in a waterfall manner, testing and iteration was
performed regularly to assure the validity and safety of the code base.

Method

Bow Draw

A core requirement of the project is to allow the player to draw a bow, for all attack abilities the bow
must first be drawn before any of them can be used.

Bow Fire Trigger

The bow will fire if it is both drawing and if left mouse is clicked.

Ability: Default Arrow

First check if bow is drawn, then call function stamina drain to slowly make the player lose stamina.
Then if projectile path is off call the function “Default Arrow Fun”. The Arrow speed is then set to
default arrow speed and draw time is calculated, the crosshair is then set to true and is added to the
view port. If the bow damage has 4 stages, all damage progressively goes up the longer the bow is
draw capping out at 100.

Ability: Arcing Arrow

First check if bow is drawn, then call function stamina drain to slowly make the player lose stamina.
Then if projectile path is on (this is triggered by holding the 2" mouse button), call the function “Arc



Arrow Fun”. Damage is set to 35 and the speed of the bow climes until it reaches its cap of 1000,
then the clear Arc function is called. The clear arc function destroys the old spline meshed and clears
the arrow paths point, as they will not be in use anymore. After that the projectile path is calculated
and the results get passed through to the “update Arc Spline function”.

Ability: Special Attack
The

Crosshair Widget

The widget is used by the bow, and is structured as so:
e Canvas
O image

And is only shown when the bow is drawn and the Arcing arrow is not used. This was implemented
with the use of a bool value that if true would create the crosshair and added to the camera
viewport. Whilst false destroy it. The location of the crosshair was also calculated using the speed of
the arrow at that given point in time, the default speed.

Stamina and health bar Ul

The health and stamina bar Ul, or “widget” is a user interface that is dynamically created by the
player blueprint at the start of the games runtime and added to the camera viewport.

The widget is structured as so:

. Canvas
. health (Progress Bar)
. Stamina (Progress Bar)

It is constantly being update alone with the player health and
stamina to display to the user. both values are shown as
progress bars

Development
UML Diagram



Archer Animation BP

Archer Class C++ Variables
Child of

Archer Class BP

spawns
Does damage

to

Does damage
Arrow Class = e Enemy Class

Arrow class Enemy class Archer classes Animation blueprint

Main variables; Main variables; damage, Main variables; movement, Main variables; movement,
Speed & damage isSeeingPlayer, &health isDrawing, CanFire, Arrow isDrawing, and CanFire, etc...

Speed & damage etc... . .
These are taken These are the variables ¥ < These variables are derived from

from the Archer that will be most These are calculated based Archer class and gives the
class when important when reacting on multiple functions and is animation blueprint information
spawned. with the other classes. entirely dependent on what so that it will change animations
abilities are being used. And when necessary, and signals to
what animations are in the the Archer class when animation
midst of being played. are finished or have been
triggered .

Technical Discussion:

what you created and the techniques that you used to achieve them. This is where you describe what you did
and HOW you did it

Development :

Blue prints then c++.

Conclusion:

- In“monster hunter: rise” there is an ability called “wirebug”, it is when a player is grappling
up and launched to attack enemies from above. | attempted to imitate this feature but with
the limited time was unable to make it truly useful and fully functioning, so it was removed
from the project.

- Also another visual cue | wanted to implement was to increase the glow on the arrows when
charged to different stages, sadly thanks to limited resources and time | was unable to do this
but could definitely be an improvement later on.

- Ammo coating types was another thing | wanted to implement with its own unique effects
and Ul, but limited resources and time meant that it would have to be added later on.

- The Enemy health bar also only displays only 1 of the enemy mannequin’s health despite all
having different and independent health from one another, again could not be fixed in time.

- One main thing that held me back from creating the Arcing arrow in c++ where the spinal
meshes as they couldn’t be deleted or created in anyway attempted.

References:

All Web pages, Tutorials, videos etc you used. List them here.



Bow bp tutorial

https://youtu.be/uwKuinJClyI?si=pHB EFD-wpflnd-9

https://youtu.be/2uRQj6mPR64?si=6n9cal5Xs4dWSnSH

https://youtu.be/NAHRI7ZfM|K8?si=YnMG-YkQswaobd1U

https://youtu.be/WAKIE6rQutU?si=v2Y5cMK6dD-Uzx2-

Enemy Al
https://youtu.be/xm-7m5Fw1HU?si=IEdcBsxBVgVhnXYO
https://youtu.be/fp5LbdC4vek?si=0rz8u3Kf2d5KQQJC

Paragon: Sparrow, Epic Games- Epic Content- Sep 4, 2018
Unreal documentation



