Tool creation for an in-house engine:
How does one create a shader/post-processing
tool for use in education?

Dannielle G. Smith

BSc (Hons) Computer Games Applications
Development, 2025

School of Design and Informatics
Abertay University

Table of Contents

Table Of FIQUIES ... iv
Table Of TaDIES ..o Vv
ACKNOWIEAGEMENLSooiiiiiiiiie e Vi
ADSTIACT. ... Vil
Abbreviations, Symbols and Notation.................ccooe e viii
Chapter 1 INtrodUCHONooeeiieie e 1
1.1. Research QUESHIONooiiiiiiiiiie e 1
1.2. ProjeCt OVEIVIEW.....cco e 1
1.3, ProjeCt AIMS ... 1
R S T ol o] 1 Y RO UPRRPRR 1
1.4.1. ODJECHVES: ... 1
1.4.2. What It Does Not Include: ... 2
1.4.3. SCOPE ChaNQGES:eevieiiiiiiee ettt e 3

1.5 HYPONESIS. ... 3
Chapter 2 Literature ReVIEWccccuiiiiiiiiiieeeee e 4
2.1, Educational USe..........cooiiiiiiiiiiiiic e 4
2.2, SNAUEIS ..o 6
2.1. The Basics of Shaders ... 6
2.2. Post-Processing Shaders.........ccueeiiiiiiiiieieiieee e 8
2.3. Shader Libraries ... 9
2.3. Render PIpeliNes..........cooiiiiiiiiiieeeeeeeee e 10
2.3.1. Renderers and the Rendering Pipeline...........cccocoviiiiiieenens 10
2.3.2. Structure of the Rendering Pipeline...........ccccccciiiiiininen. 10
2.3.3. Advanced and Modular Pipelinescccccvvvvevvveievevvenennnnnnnn, 11
2.2.4. Educational and Practical Implicationsccccvvvvvvivinnnnnens 11
2.5. TOOI DESIGN ...ttt a e e e e e e 11
2.5.2. Usability and Accessibility in Game Development Tools 12

2.5.3. Tools as Cultural and Creative Enablers.......cccoovvevveeviveeennn.... 13

2.5.4. Historical Perspectives: From CAD to Collaborative Design .. 13

2.5.6. Prototyping....ccoooeeieeeeee e 14
2.7. Conclusion - Tying everything together.............ccccoiiiieen, 15
Chapter 3 MethodoIOgYeeiiiiiiiiiiee e 15
B B0t O o =1 o o 11 T SRR 16
3.1.1. Main project PIECES........cceeiciieieeieee e 17
3.1.2. Research and Development.........ccccccoooiiiiiiiiiiiceee e, 18
3.1.3. TOOl ArchiteCtureoooiiiiiiiiee e 18
3.1.4. Implementation Phases..........cccccciiiiiiiiee 19
3.1.5. Documentation and Tutorials ..o 19
3.2, IMPIEMENTING....ci i 19
3.2.1. DirectX11 Prototypecooovuiiiieiiiieee e 19
3.2.2. Transferring Prototype to Skateboard / DirectX12 22
3.3, TESHNG .. 25
3.5. Documentationcooiiiiiiiiii e 25
Chapter 4 Results & DiSCUSSIONcccuvviiiiiiiiiee e 26
4.1 INrOAUCHION. ... e 26
4.2 Pre-Tool — Initial Understanding of Conceptsc.ccoccvveveeeiinnnnnnn. 27
4.3 Post-Tool - Outcomes and Learning Improvements........................ 27
4.4 Tool Usability and User EXperienceccccoveveeeeiiiiiiiee e 28
4.5 Interpretation of FINAINGSoooooiiiiii e, 28
4.6 Comparison with Existing Research.............ccccooviiiiiiiiiiiic, 29
4.7 Implications for Education and Tool Design...........ccccceeeeiiiiiiennnn. 29
Educational Practices ... 29
Tool Design Considerationsccuevveiiiiiieee i 29
4.8 Limitations and Challenges.............ccccoiiiiiiiiiee e 30
TOOl LimItatioNSccoiiiiiiii e 30
Methodological Limitations ... 30

4.9 CONCIUSION. .. e e 30

Chapter 5 Conclusion and Future Workcccoooeiiiiiiiieieeee e 31
6.0. CONCIUSION. ...ttt 31
6.1. Summary of Key FINdingscccuvveiiiieeeiiiieeeee e, 31
6.2. Implications for Educational Practicescccccoeeiviiiiciiennnnns 31
6.3. Limitations of the Study ... 32
6.4. Final Reflection ... 33
6.0. FULUIE WOIK.....coi e 31
6.1. Improving the Educational Tool.................oooiiiiii 31
6.2. Expanding the Scope of the Study........ccccooiiiiiiiniis 31
6.3. Exploring New Educational Approaches..........ccccccccvveeeieiinnnneee. 31
6.4. Further Research DireCtionsocccveeiiiiiiiiii e 31
6.5. Conclusion of Future Work..........ccccceiiiiiiniiie e 31
List Of REfErENCES........eeiiiiie s 37
BibliOGrapiy s 39

Y o 0T T [T PP 40

Table of Figures

Table of Tables

Acknowledgements

| would like to express my sincere gratitude to Mr. Naman Merchant, my primary
supervisor, for his invaluable guidance, support, and constructive feedback
throughout this project. His expertise and encouragement have been instrumental in
shaping the direction and execution of this research.

My thanks also go to Erin Hughes, my secondary supervisor, for her additional
support and insights.

| would like to acknowledge Einar Bruverisv, a member of the Skateboard
development team, whose advice and technical insights were highly beneficial
throughout the project. Special thanks are due to the creators of the Skateboard
Engine, whose work provided the game engine used as a foundation for this
research, and to the developers of IMGUI, whose open-source contributions
supported the creation and functionality of the educational tool.

Finally, | would like to extend my appreciation to all those who volunteered their time
for testing and feedback. Their participation in tool evaluation and data collection
was vital to the success of this study.

Vi

Abstract

/lwork in progress

This paper outlines the development of a user-friendly shader tool designed to assist
developers, with a focus on those new to development, in creating immersive

environments using shaders and post-processing effects/techniques.

As the gaming industry places a greater emphasis on game visuals the development
of more advanced shaders and post-processing techniques are naturally produced.

The complexity of shader programming can be a major obstacle for newcomers.

This tool will attempt to streamline developers' workflows by providing a user-friendly
interface for shader creation and integration, as well as a library of pre-built shaders,
allowing users to play around with various visual effects without needing extensive
graphics coding skills.

This paper will go over the tool's creation, it uses in an educational environment and

its efficiency as both a tool for development and a way of learning.

Vi

Abbreviations, Symbols and Notation

If required

GUI - Graphical user interface

Skateboard -

Tool — in this context the tool/tools that are discussed are specifically graphics
related tools, like unreal engines material shader.

viii

Chapter 1 Introduction

1.1. Research Question

Question: "Tool creation for an in-house engine: How does one create a shader/post-
processing tool for use in education?"

1.2. Project overview

This project aims to develop a shader tool in the form of a library designed to help both
developers and new programmers explore and effectively utilize post-processing effects. By
providing a collection of pre-built shaders that can be easily applied and customized, the
tool will allow users to dive into the world of graphics programming with minimal coding
knowledge. The tool will also feature an intuitive visual editor, complete with a preview
mode for real-time feedback, ensuring an engaging and accessible learning experience for
users at all skill levels.

In addition to providing a user-friendly interface, the project will include a step-by-step guide
to help users navigate the in-house engine tool. This will be coupled with comprehensive
documentation that breaks down the concepts behind shader creation and post-processing
effects. The goal is to bring greater awareness to the capabilities of graphics-related
programming, showcasing its importance and applications in modern development.
Furthermore, the plug-in will support education by acting as an interactive learning tool,
allowing users to experiment, understand, and gain foundational knowledge in graphics

programming.

1.3. Project Aims

Aims:

e To create a shader tool in the form of a library to help developers and new programmers
explore and use post-possessing effects effectively.

e To have a step-by-step easy guide to an in-house engine tool that is easy to use and
pick up.

e Bring more awareness to the uses of graphics-related programming.

¢ Find a way that this plug-in could support education on graphics programming.

1.4. Scope
1.4.1. Objectives:

. Shader Library Creation:

a. Develop a library containing pre-built shaders that developers can easily
apply, customize, and integrate into their own project/s.

b. Provide simplified code/functions/etc to make shader usage more accessible.

. Visual Shader Editor (GUI):

a. Create intuitive GUI that enables users to create and modify shaders without

needing extensive coding knowledge.

. Real-Time Preview Feature:

a. Implement a preview mode to visualize shader changes in real-time.

b. Ensure the preview feature is only available in GUI mode and while the
program is running.

. Comprehensive Code Documentation:

a. Offer built-in documentation and a separate PDF guide explaining the "how"
and "why" of shader creation.

b. Include step-by-step tutorials and explanations to guide users at all levels.

. Optimized Performance:

a. Ensure that the tool operates efficiently without negatively affecting
performance.

. Beginner-Friendly Design:

a. Provide intuitive code and tools that even beginners can easily pick up and
use within the first 15 minutes of experimentation.

. Educational Value:

a. Design the tool as an educational resource, helping users gain a basic
understanding of post-processing effects and shader programming.

. Accessibility Features for the Ul

a. High Contrast Mode and Colour Blindness: Does the tool offer high-
contrast themes or colourblind-friendly modes to ensure visibility for users
with different visual needs?

b. Customizable Font Sizes/Layouts: Can the user adjust font sizes or Ul
scaling for better readability?

1.4.2. What It Does Not Include:

1. Particle Effects Creation:

The initial proposal included particle effects creation, but this has been removed due
to the broad scope and complexity of the project.

1.4.3. Scope Changes:

1. The project has evolved from being a tool with educational potential into a full-on
educational tool. This includes added documentation, and tutorial features to support
learning.

2. Additionally, accessibility features will be incorporated, as this is an educational tool,

and many users require such support to ensure inclusivity.

1.5 Hypothesis

Tools tend to help base understanding, but theory will only help so much when applied to
programming as it won't teach syntax or give more in-depth knowledge. It's a quick and
easy tool for those who don't have the time or full knowledge to create their own shaders
and may help with the basics, but if one wants to gain more understanding of the process
other more traditional means would be recommended. But overall, a good starting point and

stepping stone for getting a more in-depth understanding with practical experience.

Chapter 2 Literature Review

Game development has become more accessible thanks to easy-to-use game development
engines like Unity, Unreal, and RPG Maker. Letting a wider variety of game makers -
including students and hobbyists- enter the industry. These easily available resources have
made game development more accessible and encouraged creative and experimental
ventures outside of conventional AAA games. However, while fundamental design and
development tools have advanced, allowing for a lower entry barrier to the creation
process, there remains a notable gap in easily available educational resources and entry
points for more specialized areas—particularly post-processing and shader development.
Post-processing effects, such as bloom and colour grading, are critical for shaping a unique
visual identity. Shaders and visual effects not only enhance aesthetics but also influence
gameplay, narrative, and emotional tone. Despite their importance, tools that teach these
skills in an accessible and easy-to-learn way are limited and are made with professional
developers in mind, not beginners who are looking to learn. While professional tools like
Unreal's Material Editor or Unity's Shader Graph exist, they are often intimidating for
beginners because of their high entry barriers and lack of tutorials; though they do have
communities that can help fill the gaps, they can only help to a limited extent.

Current teaching methods—Iectures, tutorials, and traditional classes—struggle to fully
teach the length of post-processing work. Tools that are easy to use and made with
education in mind are clearly needed so that students can learn by playing, experimenting,
and receiving visual feedback with hands on experience.

This literature review looks at the growth of easily accessible tools for game development,
what shaders are, and the importance of post-processing and tools in modern game
development, highlighting the lack of educational resources for more specialty skills like
shaders and post-processing effects.

It sets the stage for the development of specialised tools designed to bridge the gap for
post-processing effects, supporting learners in understanding and creating post-processing

effects through guided, hands-on experience.

2.1. Educational Use

Post-processing and shader development play a vital role in modern game design,
particularly in shaping the visual aesthetics and emotional tone of interactive experiences.
In educational settings—especially within game development and computer graphics
courses—these tools provide an essential entry point for teaching advanced concepts such

as rendering pipelines, lighting models, colour theory, and optimization strategies. Students
who interact with these systems tend to have a greater understanding of computer graphics
in addition to learning the technical principles of underlying visual effects easier.

Teaching shader programming is still a difficult task as beginners find shaders intimating (A.
Toisoul, D. Rueckert, B. Kainz, 2017) and often challenging as learning shaders tend to
involve abstract mathematics and require familiarity with GPU-specific programming
languages and APIs like DirectX, OpenGL and Vulkan. The intricate nature of shaders and
visual effects is often difficult to explain using conventional classroom methods like lectures,
textbooks, labs, and tutorials. When working with graphic systems, this disparity can limit
students' understanding of topics and impede their ability to learn.

In order to solve this, interactive learning settings that provide instant visual feedback are
becoming more and more acknowledged as crucial to education, particularly shader
education. Tools like Unity's Shader Graph, Unreal Engine's Material Editor, and Godot's
Visual Shader Editor allow users to build shaders through node-based interfaces, lowering
the learning curve and allowing more determined learners a way to explore shaders and
post-processing effects. Although it still requires a basic understanding of shaders, online
tools like Shadertoy (Shadertoy, Inigo Quilez, and Pol Jeremias, 2013) further increase
accessibility by allowing users to experiment with GLSL shaders right in the browser,
providing instant visuals to changes in the code.

Despite these developments, most shader creation tools are designed for professionals or
people with greater experience, with little consideration for educational uses or beginner-
friendly instructional resources. Some tutorial features are included in engines like Unity
and Unreal, but they frequently can't keep up with rapid software updates or don't provide
the context required for beginners to learn the already complex ins and outs of shaders.
Thanks to this, there is a discernible lack of learning material that concentrates only on
shaders and post-processing effects.

The visualization subsystem is particularly crucial in this context, as up to 80% of human
perception is processed visually, Branislav Sobota (2023). By allowing students to see the
immediate impact of shader modifications—whether it's adjusting bloom intensity, changing
surface materials, or applying colour grading effects—educational tools can turn abstract
theory into tangible experience. This visual interactivity makes concepts like lighting models
and fragment shading easier to understand and apply, especially for visual learners.

Game engines also serve as powerful educational platforms as they bridge theory and
practice. Their modularity and support for visual scripting, plug-ins, and real-time rendering

make them great for a wide range of development and educational means —from casual

createrscreators to professional teams. Tools such as Unreal's Blueprints or Godot's node
system show how visual approaches to complex systems can simplify learning while
preserving the depth and nuance of development.

While shaders and post-processing are essential components of modern game
development and computer graphics, they are inaccessible to the majority because of the
high learning curve and the lack of easy-to-understand educational resources on the topic.
A platform that could bridge the gap between complex technical content and beginner-
friendly learning is something that would play a critical role in improving how these topics
are taught. Something that can help students visualize shader logic and post-processing
effects in real-time yet "fun" enough to not given into frustration.

In the context of this project, the development of a shader/post-processing educational tool
aims to fill the gap for an easy starting point to post-processing effects for beginners by
prioritizing accessibility, real-time feedback, and intuitive Ul. Unlike traditional learning
methods, a tool that will focus on visual experimentation as a core teaching strategy,
allowing students to manipulate shaders and post-processing effects in an environment that
encourages exploration. This aligns with the principles of gamified learning, where
engagement and curiosity drive understanding, and learners gain confidence and

experience through active participation.

2.2. Shaders

Modern computer graphics increasingly relies on the use of shaders to improve many
aspects of rendering, from unique visuals to effects, as well as to optimized performance
and preform calculation for lighting and other such things. This section of the chapter is
dedicated to shaders and is divided into three different sections: the basics, their use in
post-processing, and the use shader libraries.

2.1. The Basics of Shaders

At the core of modern rendering pipelines are shaders. In computer graphics, shaders are
small or "micro" programs that run on the GPU, they determine how images -and more
specifically pixels- are drawn to the screen. Think of them as instructions that tell your
computer how to colour, light, and transform objects in a 3D or 2D space. Shaders are
essential in creating anything graphics related, from realistic lighting and shadows to
stylized effects like cartoon outlines, or effects like bloom.

There are five primary shader types: vertex, pixel/fragment, geometry, tessellation, and
compute. Each has a distinct function within the graphics pipeline. These are listed below:

Vertex Shaders; The vertex shader calculates each point or "vertex" of a shape,
determining its position in 3D space and how it moves. They calculate where the vertex
should appear on screen after applying transformations like scaling, rotation, or
perspective. For example, if you're animating a wave, the vertex shader helps calculate the

ripple effect.

Pixel Shaders, otherwise known as a fragment shader; This shader deals with each pixel
that makes up the final image rendered to the screen, deciding its final colour and
appearance. This is where effects like lighting, shadows, transparency, reflections, texture
mapping and other visual effects are added. If something looks shiny, glowing, or

realistically lit, the fragment shader is what runs it.

Geometry Shaders; These come after the vertex shader in the graphic pipeline and can
dynamically add, remove, or alter geometry. Geometry shaders work with entire shapes,
such as triangles, and can even create new ones, unlike vertex shaders that can only work
with individual points. A geometry shader could be used to add grass blades to a surface or
to make a trail behind a moving object.

Tessellation Shaders: These include the tessellation control and tessellation evaluation
shaders. They're used to dynamically increase the detail of a surface by breaking it into
smaller parts or patches. This is useful for things like smooth terrain, wrinkles in clothing, or

highly detailed surfaces without manually modelling every detail.

Compute Shaders: Unlike the others, compute shaders aren't directly tied to drawing pixels
on the screen. They're general-purpose and used for complex calculations that benefit from
the GPU's speed, such as physics simulations, particle systems, or image processing tasks.

Shaders are typically written in specialized programming languages such as GLSL
(OpenGL Shading Language) or HLSL (High-Level Shading Language). While the syntax
might look a bit different from common languages like C++, C#, or Python, the core ideas—
variables, functions, logic—are the same. Many game engines and graphics APIs provide
tools and frameworks to help you get started without needing to write everything from
scratch.

Understanding shaders opens a world of creative control. Whether you want to simulate a
glowing force field, mimic the look of hand-drawn art, or recreate the subtle bounce of light

off a shiny surface, shaders are the key.
2.2. Post-Processing Shaders

In today's graphics programming, post-processing shaders are an essential tool for applying
full-screen effects to a scene after it has been rendered. These shaders are used on the
finished image/texture and treat it like a flat canvas/plane for extra effects to be layered on
rather than manipulating 3D points or textures during the rendering process. A more
polished or stylised appearance is the end result. This is all done to give the piece of media
-whether it be a game or a film- a unique look.

Bloom (which mimics light bleeding from bright areas), motion blur, depth of field, tone

mapping, and colour grading are examples of common post-processing effects. You would
anticipate these effects in video games, cinematic visuals, or stylised independent games.
Without changing the underlying geometry or lighting, they are also employed to delicately

add realism, highlight movement, or evoke particular moods.

These shaders are often run in a full-screen pass, where the rendered scene is fed into a
fragment shader via a framebuffer texture. From there, the shader manipulates or
processes the pixels using mathematical operations—blurring, blending, manipulating
colours, or even applying custom filters like pixelation effects. Since they operate on the 2D
image space, post-processing shaders can be extremely flexible and stackable, allowing
developers to layer multiple effects in sequence or selectively apply them based on depth,
colour, or object masks.

In practice, implementing post-processing frequently involves managing multiple render
targets, custom buffers, and multi-pass pipelines. More complex techniques, like screen
space ambient occlusion (SSAQ) or god rays, require additional depth or lighting
information from earlier stages of the render pipeline. Thanks to this, post-processing

shaders can range from lightweight visual tweaks to performance-intensive calculations.

To streamline this complex and hard-to-manage process, modern tools like Unity's
Universal Render Pipeline (URP) or Unreal Engine's Post Process Stack offer built-in
support for post-processing effects that allow users to customize the parameters being fed
in. These tools still allow developers to write their own post-process shaders, often in a

language like HLSL or with visual tools like Unity's Shader Graph, to tailor the exact look
and behaviour of game visuals to the developers liking.

Another tool in this space is Tinsl, a domain-specific language designed for writing modular,
multi-pass shader logic. By allowing developers to specify render blocks, chain passes
together, and test effects in a live coding environment, Tinsl streamlines the process of
creating intricate post-processing pipelines. Developers can also write their own post-
process shaders, often in HLSL or with visual tools like Unity's Shader Graph, to tailor the

exact look and behaviour of their game's visuals.

Shaders for post-processing are ultimately about flexibility; they allow developers to adjust
the finished image to better suit their creative intent, a games narrative, or to just enhance
game play. Many of those final artistic touches are realised in post-processing, whether

their aiming for dreamy softness, surreal distortion, or brutal reality.
2.3. Shader Libraries

Shader libraries are collections of reusable shader programs designed to speed up
development, keep consistency throughout a project, and promote best practices in
graphics programming. These libraries often include a wide variety of shader types—from
basic vertex and fragment shaders to more advanced effects like dynamic lighting,
reflections, or surface deformations.

Shader libraries serve as a practical basis for the production process. They are essential to
developers' ability to rapidly prototype, refine visuals, and maintain visual consistency
throughout projects. They allow teams to build on pre-existing and optimised code rather
than having to create shaders from the scratch each time. This allows programmers and
artists a common language for visual aspects, and speeds up development, whilst lowering
bugs.

Major game engines like Unity and Unreal integrate shader libraries directly into their
ecosystems. Unity's Standard Assets, various GitHub repositories, and community-driven
libraries provide everything from toon shading and procedural textures to complex water
simulation and volumetric lighting. Unreal Engine's Material Editor also functions as a
shader library system, letting users access and build on a wide range of pre-made materials
and effects. Likewise, the open-source nature of Godot allows for extensive sharing and
integration of community-made shaders.

Visual previews, consistent structure, and comprehensive documentation are essential for
shader libraries to be used to their full potential. It makes it simpler for teams to understand
the shaders -how they operate, how to adapt them to meet needs - and integrate them
without requiring a more rewriting then necessary. On the other side, poorly organised or
opaque libraries may create bottlenecks, making them challenging to use.

Tools like Unity's Shader Graph and Unreal's Material Editor takes the idea further,
combining reusable shader logic with node-based interfaces. These systems make it
possible to rapidly design and prototype visual effects without digging into low-level code.
They offer a middle ground between visual art and technical implementation, allowing both
technical artists and programmers to contribute directly to the visual pipeline.

In short, shader libraries are not just a convenience—they're a critical part of modern
graphics workflows. They enable faster iteration, foster collaboration, and provide a reliable
base for both everyday visuals and cutting-edge effects.

2.3. Render Pipelines

2.3.1. Renderers and the Rendering Pipeline

Rendering is the process through which a 3D scene is transformed into a 2D image that
can be displayed on screen. As described in multiple sources, the rendering pipeline serves
as the backbone of any real-time graphics system, orchestrating how geometry, textures,
and lighting come together to produce a final image that is then rendered to the screen to
be viewed. L. Crawford (2022) compares video games to flipbooks: "Video games are like
flipbooks. Every few milliseconds, a new picture appears on the screen, which gives the
illusion of fluid motion. The faster these images can be drawn to the screen, the smoother
the game looks and feels to "play", the speed and efficiency of rendering these images
directly influence the visual smoothness and interactivity of modern applications, especially
in video games and simulation environments.

2.3.2. Structure of the Rendering Pipeline

The traditional graphics pipeline is made up of several stages, starting with vertex
processing -using the vertex shader-, where the geometric data of 3D shapes/models made
up of vertices, normals, and texture coordinates, are transformed into screen space. This is
followed by rasterization, which converts the geometry into discrete pixels or fragments.

Finally, fragment shaders determine the final colour and appearance of each pixel.

10

Shaders, small GPU-executed programs, are central to programmable rendering pipelines.
Vertex shaders operate on individual vertices, transforming positions and attributes, while
fragment shaders calculate per-pixel visual details such as colour, lighting, or texture
mapping. Post-processing shaders—used for effects like motion blur or depth of field—run

after the main scene rendering and are applied across the whole screen.
2.3.3. Advanced and Modular Pipelines

Recent research and development efforts have focused on building modular, runtime-
editable shader pipelines. One such framework - built on MeVisLab - adopts the
SuperShader concept to enable dynamic shader composition. This approach is diffrent from
with earlier visual shader programming systems, such as Voreen or VolumeShop, which

required static shader compilation and offered limited runtime flexibility.

This framework supports a visual interface where users can inject custom GLSL shader
functions at specific points in the pipeline - For example, before or after volume
classification steps- using shader nodes for parameters and includes. This design facilitates
rapid prototyping and application-specific customization without requiring recompilation.
Medical use cases, like using clip plains for multi-volume medical data or to assist in
radiofrequency ablation planning where ellipsoid-shaped ablation zones are rendered
based on applicator models. This demonstrates the framework's ability to handle complex,

real-time visualizations made for medical needs.
2.2.4. Educational and Practical Implications

Comprehending the render pipeline helps students better understand computer graphics
theory and develop their debugging and optimisation skills. Modern shader tools that are
built on nodes enable faster iterations and interactive experimentation, facilitating hands-on
learning in a variety of applications, such as simulations and games. The shift from fixed-
function to programmable and now modular rendering pipelines marks a significant
evolution, enabling more flexible and domain-specific visualizations, particularly valuable in
fields like healthcare.

2.5. Tool Design

The design of game development tools plays a crucial yet often overlooked role in shaping

how game creation is approached and can affect things like who can make games, how

11

games are made, and the kinds of creative practices that emerge across professional,
educational, and independent/indie contexts. The emphasis on ease of use, intuitive
interfaces, and real-time feedback from both causal creators to professional teams show a
growing recognition that the role of tools has shifted from mere technical tools that only
specialists use to dynamic educational and expressive mediums. Whether through visual
scripting, procedural generation, or real-time feedback systems, tools increasingly shape

not only workflows but also cultural and educational means of game design/creation.

This section reviews the literature on tool design. It draws connections between practices in
industry and education, situates modern game development tools within a broader lineage
of computer-aided design (CAD), and explores evolving frameworks for understanding the

role of tools in the iterative game-making processes.
2.5.2. Usability and Accessibility in Game Development Tools

User-centred design is essential to the effectiveness of development tools in both an
industry and educational context. Tools that offer visual editors simplified user interfaces
and real-time feedback significantly lower barriers for beginners, particularly in technically
complex domains like shader programming or post-processing. Shadertoy, for instance,
offers instant visual feedback that facilitates trial-and-error learning, and Unreal's Material
Editor and Unity's Shader Graph convert complex functionality into easily navigable, node-

based workflows.

These design choices are critical in both formal and informal learning environments.
Educational software, drawing from principles of cognitive scaffolding and constructivist
learning (Ito, 2009), must balance simplicity with depth—offering enough structure to
prevent frustration while still allowing room for creative exploration. Beginner-friendly
engines like Klik n Play and Scratch have influenced contemporary tools by embracing
drag-and-drop and visual programming paradigms, which allow users to produce meaning
through making rather than instruction alone.

The same principles extend to professional contexts. A study of seven game development
organizations—ranging from startups to major studios—found that the most valued tool
features were adaptability and support for rapid prototyping, both of which facilitate iterative

workflows and creative risk-taking.

12

2.5.3. Tools as Cultural and Creative Enablers

Accessible tools like GameMaker, RPG Maker, and Twine have been crucial in increasing

involvement in the indie and amateur game-making communities.

In the indie and amateur game-making scenes, accessible tools like GameMaker, RPG
Maker, and Twine have played a key role in broadening participation. These platforms -
often used by creators without programming expirence- serve not only as technical
environments but also as cultural frameworks. They shape the kinds of stories that can be
told and support aesthetics that are often more personal, experimental, or politically
expressive (Anthropy, 2012; Keogh, 2019).

The emergence of communities like Glorious Trainwrecks, Flatgames, and RPG Maker
forums showcase how intuitive tools catalyze creative expression and often have
communities built around them. By enabling rapid creation, collaboration, and iteration,
these tools foster developmental and creative environments that reject the dominant
industry ideas of polish and profitability in favor of accessibility, experimentation, and self-

expression.

These communities can be compared to grassroots design ecosystems, where the line
between tool and user blurs and where playful prototyping is not just a workflow but a mode
of cultural production. As Salen and Zimmerman (2003) argue, play itself is integral to
evaluating design goals—questions like "Is this fun?" or "Does this work?" can only be
answered through direct interaction with a playable artifact rather than through static
documentation.

2.5.4. Historical Perspectives: From CAD to Collaborative Design

The evolution of tool design can be contextualized within the history of the topic. Early CAD
tools from the 1950s and 60s were conceived not only as drafting environments but also as
reasoning systems—able to provide what Schon (1983) called "back talk," where a system
reflects constraints, implications, or feedback on a designer's actions.

Knowledge-based Al systems started to improve this "back talk" in the 1980s by
incorporating domain-specific expertise. This led to the development of Domain-Oriented
Design Environments (DODEs), which integrated reusable design logic with factual

knowledge to critique ideas, propose alternatives, and even justify those recommendations

13

(Nelson & Mateas, 2009). The role of the tool shifted from being a passive interface to an
active participant in the design process.

Nelson and Mateas (2009) recorded this change by classifying the roles tools play in the
design process.

"Designer's slave," "nanny," "assistant": reducing cognitive load by automating tasks

like helping with planning and organization tasks.

e "Advisor": enhancing design reasoning through intelligent feedback based on the

content of the current design;

e "Coach", "colleague" or "expert": can contribute domain knowledge and design
insight, offering suggestions and improvements to be made with their own "ideas".

e "Collaborator": has the ability to make autonomous design suggestions.

e "Designer": acting as a generative agent capable of full design production, basically
being a "dominant" collaborator.

Another way that classifies these design tools are "instruments" and "effective tools" -
Khaled et al. (2013), drawing on HCI research by St. Amant and Horton (2002) -, where
"instruments" are tools that provide feedback and insight into a design and "effective tools"
directly produce and transform design materials. Tools, like Gillian Smith's Tanagra,
function as both—allowing level editing while also offering feedback on playability.

2.5.6. Prototyping

Prototyping occupies a central place in this evolving design landscape. More than a step in
production, it is a mode of inquiry that reveals properties of games that are otherwise
unknowable. As Raph Koster said, "Building a game of a design document is like filming a
movie of the director's commentary." Playable prototypes, whether built with Unity,
GameMaker, or Twine, allow both creators and stakeholders to assess aesthetic, technical,

and experiential qualities.

They also help teams communicate, using it for evaluating art pipelines, gameplay
feasibility, and player experience. Tool design is inherently tied to the material politics of

14

iteration — who can make a prototype, how quickly, and under what constraints determines
whose ideas get tested, refined, and shipped.

2.7. Conclusion - Tying everything together

The literature on game development tools and informal game-making communities
highlights a shared commitment to accessibility, experimentation, and user-centered
design. Through user-friendly interfaces and instant feedback, tools like RPG Maker, Klik n
Play, and Unity's visual editors reduce entry barriers and enable learners and hobbyists to

participate in game creation.

Communities like Flatgames and Glorious Trainwrecks are prime examples of how
accessible tools encourage expressive, cooperative activities that prioritise personal
expression over more corporate and "polish" projects. . These spaces reframe game
development as a creative, everyday activity shaped by both the affordances and limitations
of the tools used.

By using visual programming and immediate feedback to reduce cognitive load and
encourage exploration, the most effective instructional tools strike a balance between
innovation and simplicity. This approach fosters technological literacy without overwhelming

learners.

In general, tool design becomes a cultural force that influences the industry as a whole and

how the medium is seen.

Chapter 3 Methodology

The purpose of this section is to outline the development process for the shader tool
"PennyBoard" designed for educational and developmental purposes. This section will
cover the planning, development, implementation, and testing of the tool. And will also

15

provide a comprehensive breakdown of the components that make up the tool including;
the shader library, the visual editor, and the real-time preview feature.

This tool serves as a learning aid for those interested in graphics programming, more
specifically post-processing effects, and a helpful way to hasten workflow for developers
with limited time, resources and knowledge of post-processing. The development focuses
on creating a practical, accessible tool that can assist students, developers, and educators

alike.

3.1. Planning

Project Goals:

The primary goal of this project is to create a shader tool that supports both learning and
developmental needs. This is a tool for helping those who wish to learn more about
graphics programming - more specifically about the post-processing process — and those
who wish to save time by using a tool instead of making and implementing their own
shaders, a time-consuming process that requires a lot of specific knowledge that the
average person doesn't have. This tool will help lower the barrier of entry for those without
deep technical knowledge in shader development.

Timeline & Milestones:

16

(] THE V05T AT VEISIOM OF THE PR SEATE 00U TOSHOW CORCERT S0 FLASALITY OF Tl PROP WEsts

LAY DOWEL T THE L BT O P05 PR DR PG RN PR, S ADETS. N[ST PGS SR T TR LATES

OODE BORASMEARYN ITCLMERTE 08 O THE £ FEATED L BEA< sVHAT ALL DF THE CTEN |5 PORUARE KON 1T 5 LSED

TR SRR R B ELAD W = O D IS PR DR AT D, L DRI 53 S TH Sl THROS

i R TN BTIRIRS T T=F ™ TO5E A T3 TE SEA WBOLTS PO RE T=5 S50 HELUGES THE FEREEMPS M3 PP THAT 7T TIO USPE

Target Audience:

The target demographic for this tool is those interested in shader-programming at a
beginner level, like students, and developers who wish to accelerate their workflow, saving
time by using a tool with an already existing shader library that has pre-built shaders that
can easily be customized. The tool could also help educators as a resource that can be
used to give students relatively easy hands-on experience.

3.1.1. Main project pieces

Penny Board consists of 4 main components:

The Shader Library, that consists of a collection of pre-built shaders that are easily applied
to any project within the engine using the tools interface (GUI). Developers are able to
customize these shaders to fit their specific needs.

A Visual Editor; a user-friendly interface for creating and modifying shaders without
requiring extensive coding knowledge. This allows users to experiment with different visual

effects and see the results in real-time.

17

A Real-Time Preview, this feature allows users to see changes they made to the shaders in
real-time, providing immediate feedback and a more interactive learning and development
experience.

And most importantly a renderer for connecting the shaders to Skateboards rendering
pipeline. It integrates the shaders from the tool's graphics pipeline, ensuring that they are
applied correctly and function as intended. Providing the necessary infrastructure to

manage rendering states, buffers, and textures used in post-processing processes.

3.1.2. Research and Development

This is the phase that dives into researching existing shader development tools and
techniques, analysing tools such as Shader Graph (Unity), Material Editor (Unreal), and
other similar tools to gather inspiration and insights into the logic behind them and features
are most beneficial for educational purposes. As well as exploring various post-processing
techniques that could be added to the shader library, prioritizing them based on their
educational value, most sought after for current developers and customization potential.
This research forms the foundation for the design and functionality of the tool.

3.1.3. Tool Architecture

The user interface will be built using "imgui" a reliable free resource that will save time in
the development process as it is already a lightweight, and efficient resource. The Ul design
will prioritize clarity and ease of navigation. Included in the Ul will also be a real-time
preview screen to see the changes users are making whilst they work.

The renderer is responsible for handling the rendering pipeline and ensuring that shaders
work correctly in real-time. It supports efficient shader buffers and ensures that the passing
of data is optimized for performance.

The shader library currently consists of 12 unique pre-built shaders for the user to
customize and use how they see fit. All shaders are made with efficiency and ease of
access in mind, and all have comments guiding any user who wants to crack the hood open
and see how the process works for themselves. With an organized and accessible shader
library to provide a guiding hand for what any user is looking for.

18

3.1.4. Implementation Phases

The initial prototype focused on creating a basic version of the tool with a few essential
shaders and effects. The visual editor interface also was developed and designed at this
stage.

The prototype was then used as the testing ground for developing the shaders used in the
shader library and any design changes for the Ul before applying them to the skateboard
version of the tool, as the DirectX11 version was more easily malleable and fully functioning
making the perfect testing ground.

After the initial prototype was developed, transferring the tool into the Skateboard engine
started, this in itself proved quite challenging due to skateboards lack of documentation and
support as the engine is still currently in development. This stage involved making
necessary adjustments for compatibility and ensuring that the tool functions as expected
within the engine, this means creating a new render to integrate into skateboards rendering
pipeline and editing buffers and making slight adjustments to the shaders code within the

shader library.

3.1.5. Documentation and Tutorials

Comprehensive documentation is available to ensure that users can easily understand how
to utilize the tool. This will include built-in documentation accessible from within the tool
itself via tooltips and comments in the code —though the comments are not fully completed-
as well as external resources such as PDF guides. A worksheet is available that can help
guide users step-by-step through creating shaders, understanding the tools' GUI, and using
the tool itself. Testing will focus on evaluating the performance, usability, and educational

impact of the tool. This is done via user testing.
3.2. Implementing

3.2.1. DirectX11 Prototype

The initial prototype was developed in DirectX11 as | was familiar with the API enough to
use it to create a fast and realistic prototype, that could easily be compared to the final
project/tool. It was initially a basic version of the tool with few essential shaders and effects,
mostly focusing on the GUI and how the real tool would interact with the user. The visual
editor interface also was developed and designed at this stage.

The prototype was then used as the testing ground for developing the shaders used in the
shader library and any design changes for the Ul before applying them to the skateboard

19

version of the tool, as the DirectX11 version was more easily malleable and by its own right

a fully functioning tool. Making it the perfect testing ground for shader creating and

experimenting with the Uls design.

3.2.1.1. Prototyping the GUI

| Appiing the effe

Selected area

Description

Preview screen

A small screen that shows the current settings.

Save settings As - button

Save current settings with the name given in the adjoining box.

Save settings - name space

Text box that contains the tag/name the user types in.

Apply settings - button

Apply current settings to the game screen, not just the preview screen.

Set to default - button

Set all settings to their default.

Effects in use list - section

The section where all the post-processing effects are toggled on or off.

Chromatic aberration

—check mark

If “chromatic aberration” is wanted to check the mark.

Built-in-Templates - section

Section where all the pre-built templates are stored.

- Template button

Button to set values to the example pre-built template.

Saved user templates List -

section

Section where all the users made/saved effects are stored.

- Saved effect button

Button to set values to the player saved effect that's stored.

Chromatic aberration settings

—-section

The section dedicated to all the chromatic aberration settings. All effects will have their

own section for setting their values and such.

- Offset sliders

Set the offset wanted on the chromatic aberration. There is one for the x-axis and one for

they.

20

- Sample No. slider Slide the slider to choose the number of samples the down sampler will take.

-Colour picker Pick the colour you want to use for the chromatic aberration effect.

The image above shows the DirectX11 prototype. It was designed to be as simple and as

easy to pick as possible. As well as being a good base point for continued improvement

and additions to later down the line.

The wireframe shown above was a potential design to improve the tool to be later
implemented in the final version of the tool in Skateboard. Having three distinct sections:
the main editor for creating and editing effects, the saved and pre-built effects tab where all
saved effects are stored, and lastly, the tool editor that allows the user to customize the tool
itself. This relies mostly on IMGUI own customizable options as they are well maintained,
offer a vast number of customizable options as well as save time with overall development.
This includes being able to change the theme, font, colouring, and many other things that

could help those that need certain visual accommodations.

3.2.1.2. Prototyping Shaders

Shaders are developed and tested individually within the prototype tool. This prototyping
phase will ensure that the shaders function properly and efficiently before being transferred
to the Skateboard engine.

A couple shaders that have gone through multiple rounds of prototyping to make them more
efficient and readable, for example the first bloom effect was made up of 3 separate
shaders, 1 to take any pixel that was above a certain threshold and apply it to a new
texture, another to blur that new texture and the last shader merged the created texture and
the original render texture. It has now been compressed down to one shader file, even

though all those shaders have useful functions and can help make more unique effects as

21

stand-alone shaders like they are now, If a user was looking for specifically bloom it is a lot
more efficient to process it all in 1 shader as use multiple buffers to pass data to different

places for the same effect, since it would decrease performance and efficiency.

3.2.2. Transferring Prototype to Skateboard / DirectX12

After the initial prototype was developed, transferring the tool into the Skateboard engine
started, this proved quite challenging due to Skateboards lack of documentation and
support, as the engine is still currently in development causing delays in implementation.
This stage involved making necessary adjustments for compatibility and ensuring that the
tool functions as expected within the engine, this means creating a new render and multiple
pipelines within that renderer to be compatible within skateboards engine. Implementing
and editing buffers to work with Skateboard and adjusting the shaders within the shader

library.

3.2.2.1. The tools Ul

The Ul for the tool remains largely unchanged in terms of core design and layout. However,
there are key adjustments made to ensure compatibility with DirectX 12, as the syntax in
"IMGUI" varies slightly depending on API used.

22

23

For a more in-depth overview, go to the manual. (manual location)

3.2.2.2. Renderer

The renderer utilized in this tool is based on the "208" renderer provided by the most recent
version of Skateboard.

However, some key changes have been made to tailor it to the specific needs of the shader
tool. Implementing the post-processing buffers and allowing information to be passed from
the Ul into said buffers, enabling users to change the shaders values in real-time.

Adding functions that allow the user to switch between - and in the future layer- different
shaders and post-processing effects.

And having a stand-alone renderer somewhat separate from the main render pipeline

allows for easier conversion into a “plug-in”.

3.2.2.3. Adjusting Shaders

The way buffers and textures are handled in the prototype differs to the real tool due to the
infrastructure of "Skateboard". In the engine, the texture needed for post-processing effects
is encapsulated within an instance data buffer, which is a data structure designed to hold
various values required for rendering. As a result, minor adjustments in the shaders code
are necessary to accommodate this system. These changes involve altering how texture
data is accessed or how certain buffers are handled within the shaders, ensuring
compatibility with the engine's rendering framework. Thus, some fine-tuning of the shader
code and buffer management will be required to integrate with skateboards infrastructure.

24

3.3. Testing

Usability testing and educational testing is done at the same time using a questionnaire with
different sections contesting of; Basic Shader Concepts, Applied Concepts, and ease of
use.

Usability tests in the "Ease of use" category will be conducted with volunteers to gauge the
tool's effectiveness for clear and user-friendly Ul, as this is supposed to be a tool centred
around ease of use and education it's important that the Ul is concise and easy to pick up
early on. This section consists of 6 questions to test the tools ease of use and ask users for
any feedback to improve upon this.

The Educational testing is broken up into two categories "Basic Shader Concepts" and
"Applied Concepts" in the questionnaire but also includes the worksheet guide as well.
These focus on what the user has learned from using the tool and going through the
educational materials provided to assess whether the tool effectively supports learning.

The data from both the worksheet users complete as well as the questionnaires that
volunteers have filled out both before and after using the tool will be collected and
anonymized.

The tool's performance will also be assessed to identify any potential bottlenecks or areas
for optimization. The goal is to ensure that the tool does not negatively affect the

performance of the engine, even when multiple shaders are in use.

3.5. Documentation

Comprehensive documentation is available to ensure that users can easily understand how
to utilize the tool. The built-in help and tooltips that guide users through the various features
and functions will provide immediate support without having to leave the tool or the
comments within the code, like the general comments to help users understand the steps
the code takes and paragraph comments at the top of a file that describes the files general
use these allow more curious users to crack open the hood of the tool and see how it works
though some level of programming knowledge would be required.

For more detailed information and help external resources such as PDF guides are
available for both the Ul and coding sides of the tool. This documentation will cover
everything from basic usage to more advanced and complicated aspects of the tool, think of

this as a car manual for the Penny Board tool.

25

A tutorial worksheet is also available as an external resource to help guide users step-by-
step through creating shaders and understanding the tool. There may also be an option for

a built-in tutorial system that can be toggled on or off for convenience, later down the line.

-Documentation can be found in the appendix.

Chapter 4 Results & Discussion

4.1 Introduction

This chapter presents and interprets the results of the study done to evaluate the
educational tool "Pennyboard", created to introduce users to post-processing and shader
programming concepts in computer graphics and game development. This study was
conducted using a questionnaire given to participants before and after they had used the
tool. Participants were guided through the tool by a structured worksheet. This approach

provided insight into changes in learners' understanding, their engagement with technical

26

content, and the overall usability of the tool. Additionally, we will analyse the significance of
these findings, and compare them with our previous research, as well as investigate any

possible considerations for future tool design and teaching methods.

4.2 Pre-Tool — Initial Understanding of Concepts

Before using the tool, participant understanding of shader programming was limited. When
asked about the purpose of shaders, most responses were vague—e.g., "to make games
look nice." Few demonstrated awareness of the technical role shaders play in rendering
graphics. Additionally, all participants indicated they did not understand the difference
between vertex and fragment/pixel shaders, which are fundamental to GPU-based

rendering.

When asked about post-processing, the majority of users could not name any specific
effects, with only a small amount identifying "bloom." Descriptions of post-processing
effects were largely inaccurate or unclear. Most volunteers lacked awareness of how these
effects are used in games or digital media and were unable to articulate how such effects
contribute to visual storytelling or style.

These findings indicate a significant knowledge gap among participants prior to using the

educational tool.

4.3 Post-Tool - Outcomes and Learning Improvements

After using the tool, learners showed noticeable improvement in their familiarity with post-
processing terminology and visual effects. Many could now list several effects—bloom,
vignetting, colour grading, blur, pixelate, and textured glass—suggesting that the tool
helped them visually associate effects with terminology. Some users described post-
processing as "a filter that distorts the main image," indicating a developing conceptual
grasp, although confusion still existed regarding the distinction between shaders and post-
processing.

While understanding of how to technically implement effects (e.g., bloom or texture
blending) remained shallow, more participants offered plausible responses rather than
avoiding the question entirely, showing that the tool also gave volunteers more confidence.
A few were able to state that bloom involved "blurring pixels with high light values," showing

a beginning awareness of the steps taken to create the effect.

27

In applied tasks (e.g., designing an apocalyptic game environment), users provided more
relevant and structured answers, such as using desaturation or colour grading to evoke
mood, though some participants didn't specify an effect by name they did state the wanted
visuals known effects could provide. These were still basic but aligned with typical use
cases, indicating that visual experimentation through the tool had strengthened contextual

understanding.

4.4 Tool Usability and User Experience

Participants reported quite positive experiences with the tool's Ul. It was described as easy
to navigate, with clearly labelled elements and responsive controls, a minimalist layout -
that helped streamline the learning process -, and helpful Tooltips. With users stating that
they could complete tasks with minimal to no guidance. No technical issues, such as
crashes or lag, were reported.

Most users did not feel the need for customization but welcomed the idea of additional post-
processing effects, and one volunteer expressed the want for more font options. Volunteers
showed confidence in their capacity to finish the task on the worksheet independently, and
their overall satisfaction with the tool was good. Although one participant said that some
steps of the given worksheet could be cut without affecting functionality, the worksheet's
step-by-step structure was generally regarded as good.

Engagement and Motivation

Volunteers expressed enjoyment and curiosity during the task, often taking time to "play"
with the tool, it also boosted confidence in users by volunteers proactively experimenting
with the post-processing effects found with-in the tool. This aligns with the tool's aim of
reducing the intimidation factor often associated with graphics programming. While the tool
was not designed to teach advanced shader logic, its success in building foundational
comfort with the medium was clearly shown in user feedback.

4.5 Interpretation of Findings

The study shows that visual and interactive tools like the one tested here are effective at
bridging the gap between technical concepts and user intuition. While a deep

understanding of GPU programming and shader logic remained limited, the tool significantly
improved familiarity with key terminology, usage contexts, and visual outcomes of post-
processing effects.

The most notable shift was in learners' ability to name, apply, and describe post-processing
effects. This suggests that direct visual feedback plays a critical role in demystifying

28

abstract graphics concepts. Although learners were still unable to fully articulate the use of
shaders in the context of graphics programming, their engagement with the tool suggests a

readiness to pursue further learning.

4.6 Comparison with Existing Research

These findings align with existing literature emphasizing the value of intuitive, low-barrier
educational tools in technical domains (Smith, 2015; Khaled et al., 2013). Prior studies on
game design and visual programming tools have shown that interactivity and
experimentation drive both engagement and retention. Similar to shader platforms like Unity
Shader Graph or Unreal's Material Editor, this tool lowers the cognitive load traditionally
associated with shader programming by eliminating the need for code-based interaction.
Moreover, the observed increase in learner engagement supports theories in educational
technology that advocate for playful, exploratory learning models. The tool reflects
principles found in constructivist learning environments, where students build knowledge

through hands-on experience rather than passive instruction.
4.7 Implications for Education and Tool Design

Educational Practices

The results of this study suggest that tools like this could be meaningfully integrated into
early-stage modules within game development or computer graphics curricula. By using
such tools, educators can provide students with visual context and immediate feedback
before transitioning to more complex topics.

These tools could also be valuable in online or self-directed learning environments,
especially for students who may lack access to high-performance computers or formal

instruction in graphics programming..

Tool Design Considerations

From a design standpoint, this study highlights the importance of a clear interface,
contextual feedback, and low-friction onboarding. Features such as tutorials, tooltips, and
visual previews contributed significantly to the tool's usability and learning impact.

Future iterations could include additional functionality for intermediate learners — such as
basic node-based scripting, live-coding features, or dynamic debugging tips — to support
continued learning beyond the basics.

29

4.8 Limitations and Challenges

Tool Limitations

While the tool was successful in teaching basic visual concepts, its capabilities were limited
to entry-level shader understanding. It lacked the ability to display or manipulate underlying
shader code, which could hinder learners seeking to transition to programming-based

shader development.

Methodological Limitations

This study was conducted with a small and relatively homogenous sample, primarily
composed of beginners. Results may differ with a larger or more diverse participant group,
particularly if it includes learners with prior graphics experience. Also, learning gains were
measured over a short duration, and long-term retention was not evaluated.

As with many qualitative studies, some interpretations rely on self-reported data, which may
introduce bias or inconsistencies in the perception of learning outcomes.

4.9 Conclusion

The educational tool demonstrated clear effectiveness in helping novice users gain initial
familiarity with shaders and post-processing effects. Through an accessible interface and
visual experimentation, users developed confidence and were able to apply newly learned
concepts in simple design tasks. Although advanced shader logic remained out of reach for
most participants, the tool met its goal of introducing key terms and visual principles in a
friendly, engaging manner.

These findings support the continued use and development of educational tools that
prioritize usability and experimentation in complex technical domains. With thoughtful
iteration and expanded functionality, tools like this have the potential to play a pivotal role in
shaping the future of graphics education—Ilowering the barrier to entry and fostering a new

generation of creative, technically skilled designers.

30

Chapter 5 Conclusion and Future Work

5.1. Conclusion
5.1.1. Summary of Key Findings
Main Results:

This paper explored the creation and effectiveness of an educational tool designed to bring
awareness to post-processing effects and graphics programming, as well as introduce
foundational concepts in shader development and post-processing to newcomers in game
development. Volunteers were given a structured pre- and post-questionnaire to gauge the
tool's effectiveness. Users' comprehension of shader-related terminology, the role and
intent of post-processing effects, and how visual improvements affect game aesthetics all

showed improvement.

Prior to using the tool, participants expressed little to no knowledge of shaders, pipelines, or
post-processing effects, with most responses being vague or incomplete. However, after
following guided use of the tool - using the worksheet- volunteers were able to name
multiple post-processing techniques, talk about their visual impact, and demonstrate a more
applied understanding of how such effects contribute to mood, tone, and gameplay
immersion. While some technical gaps remained in areas requiring deeper programming
knowledge (e.g., combining textures in shaders), the tool clearly enabled some

improvements in understanding basic concepts.

Tool’s Contribution to Education:

The tool proved effective in simplifying shader creation for beginners, the tool successfully
turned what is usually seen as a daunting field into a more approachable, interesting, and
most importantly fun learning environment. The tool's intuitive Ul, real-time feedback, and
hands-on workflow supported users, giving them a strong sense of satisfaction whilst
boosting their confidence. Most participants described the tool as easy to navigate, well-
labelled, and effective at showcasing the practical applications of post-processing effects.
As a result, the tool served not only as an educational platform but also as a creative
sandbox that invited exploration, play, and experimentation.

5.1.2. Implications for Educational Practices

Incorporating interactive, visual learning resources like this shader tool into curricula can
greatly improve students' understanding and engagement when they are first learning

computer graphics. The tool's hands-on interface and instant visual feedback provided

31

learners with an easier way to understand complicated programming and visual concepts
than traditional lecture-based or text-heavy learning materials.

This tool can complement instructor-led teaching or self-paced learning environments by
providing students with opportunities to apply theoretical knowledge in a visual and
interactive format easily providing almost instant gratification encouraging users to continue
further. Feedback further suggests that tools like this can serve as a great bridge between
beginner-level curiosity and more advanced shader learning.

In the broader context of game development education, this tool fills an important gap
between conceptual understanding and technical implementation of post-processing/visual
effects. By focusing on visual outcomes and providing simplified interfaces for shader
manipulation, it becomes the perfect stepping stone, allowing learners to build confidence
before progressing to more complex topics like GLSL/HLSL scripting, multi-pass rendering,
or engine-level shader integration.

5.1.3. Limitations of the Study

Despite its promising results, the study faced a few limitations. Because of the limited
sample size of volunteers and the fact that most of the participants were novices, the
findings cannot be applied to a larger range of experience levels. Additionally, the
assessment's length was restricted to brief tool usage, making the assessment unable to
gauge long-term learning results or retention. Future research would benefit from a more
diverse sample that includes intermediate and advanced users, as well as a longer study to

measure how learning with the tool evolves over time
Tool Limitations:

The tool itself, while reasonably effective for beginners, lacks more advanced features that
would appeal to more experienced users or those wishing to delve deeper into shader
coding. Areas such as multi-pass rendering, custom scripting, and real-time engine
integration were identified as beneficial next steps in development. Some participants also
shown a lack of clarity in differentiating shader types and the ability to teach this inside the
tool would be greatly beneficial using beginner-friendly explanations or examples to bridge

knowledge gaps.

Performance-wise, the tool performed reliably during testing, with no reported crashes or
delays. However, its limited customization and absence of features like precise parameter
control or performance profiling may reduce its appeal for some users.

32

5.1.4. Final Reflection

This research has demonstrated the educational value of a shader and post-processing tool
tailored for beginners. By providing an accessible interface that prioritised immediate visual
feedback, the tool significantly enhanced users' experience and understanding of both
technical and aesthetic aspects of shader development. It provided a structured but flexible
learning environment that encouraged exploration and creativity whilst also addressing one

of the common barriers in computer graphics education.

Carving out a clear view of how such tools can be designed to meet the needs of new users
while laying a foundation for deeper, more technical learning in the future. These findings
contribute to ongoing discussions about interactive learning tools in game development
education and offer practical insights for educators, developers, and researchers aiming to

lower the barrier to the complex field of graphics programming.

5.2. Future Work

Although PennyBoard's current version provides a solid basis for creative expression,
intuitive Ul, and real-time effect creation, there are a number of improvements that can be
made that could significantly improve both the usability and functionality of the tool. These
additions will expand the way the tool can be used and will be able to accommodate users
of all skill levels, from novice beginners to more advanced users. Based on user feedback,
observational data, and broader educational goals, this chapter outlines areas for future
improvement. These changes will hopefully develop this project into a more robust learning
tool that can support deeper learning and greater understanding of shader programming
and graphics concepts while also catering to a wider range of users.

5.2.1. Improving the Tool
Tool Additions

The tool received positive feedback by participants for its easy-to-use, minimalistic and
intuitive design. Nonetheless, there is plenty of ways to improve the tool further, especially
for users unfamiliar with technical tools.

A more modular, customizable workplace could allow users with different skill levels better

customise their learning experience. Integrating pop-out panels and multi-monitor support

33

would enhance focus and workflow efficiency, especially for users accustomed to digital art
or animation tools. Allowing users to rearrange elements such as the parameter controls
and the preview window, making the tool more appealing to both technical and creative
users.

Additions like more beginner-friendly navigation, clearer visual cues, and detachable Ul

panels could prove invaluable.

[add img/figure/wireframes]

A requested improvement included precise input for values that currently rely on sliders -
making the tool more accessible, especially for users who find it difficult to manipulate
sliders for exact values, and more font options for readability. These changes have been
noted, and plans to put them in place have already been made. One feature that couldn't be
produced during the project's time frame but is a planned addition is multi-pass rendering
and support for layered post-processing. These additions would allow for the creation of
more complex and customizable visual outputs and would give learners a deeper
understanding and appreciation of real-time rendering techniques.

custom shader scripting with live preview and a dual-mode system that combines visual
node editing with code-based control for intermediate or advanced users. A live coding
mode, enhanced by built-in syntax documentation, code templates, and an integrated API
for exporting effects to the game engine, would significantly broaden the tool's utility beyond
entry-level education and developmental uses.

Currently, effects are viewable only in the dedicated preview panel. In future updates, users
will be able to apply and view effects directly on the main screen, making the tool properly
usable in the long run.

Future versions will include the ability to properly save and apply user-made or pre-built
effects.

The inclusion of pre-built effects will give users ready-to-use shaders they can apply,
dissect, or modify to suit their own needs. These effects will serve both as practical tools

and learning references.

More Advanced Shader and Coding Features

To support more advanced learners and to extend the educational value of the tool, future
versions might include features such as a live coding mode to allow users to write and

modify shader code with immediate visual feedback -Similar to ShaderToy's interface. This

34

dual-mode approach—visual and textual—caters to a wider range of users and learning
preferences, offering flexibility for both rapid experimentation and fine-grained code editing,
even though it will be targeted to more advanced/intermediate learners. To go with this and
other more generalised API included in this tool there are plans for built-in syntax
documentation, code templates, as well as polishing the existing code to be closer to a
proper API. This would significantly broaden the tool's utility beyond entry-level education

and developmental uses.

5.2.2. Exploring New Educational Approaches

Gamification and Interactive Learning

To increase motivation and sustained engagement, the tool could benefit from gamification
elements. This approach could transform shader learning into a more compelling, goal-
oriented process, especially for younger or self-directed learners.

Leaning more into interactive learning elements, such as real-time feedback and guided
built-in and video tutorials, could also help bridge the gap between visual exploration and
theoretical understanding. These features would make learning more intuitive while
reinforcing key concepts through practice.

Collaborative Learning and Peer Feedback

As proven by [insert refrence here] communities and collaboration can greatly improve tool
usability and make learning a smoother more fun and engaging time.

Providing collaborative features like shared shader libraries and peer-to-peer feedback
using potential community pages. Encouraging users to upload and interact with a
community would not only foster creativity but also build user confidence, create an

environment for problem-solving, and encourage mutual learning.

5.2.3. Further Research Directions

Educational Tool Evaluation

Future studies could involve proper comparisons of different shader tools to determine
which are most effective for teaching specific topics such as general shaders, lighting,
effects, or texture blending. This comparative approach would help situate the tool within
the broader educational landscape and provide insights into best practices for digital tool
design in computer graphics education.

35

5.2.4. Conclusion of Future Work

These upcoming features show a commitment to accessibility, and creativity in shader
creation. By refining both the technical foundation and user-facing design of the tool, with
the aim to create an environment where shader development is not only efficient and

effective but also welcoming and not as intimidating to a broader audience.

36

List of References

Almeida, M.S.O. and Da Silva, F.S.C. (2013) 'A systematic review of game design methods and

tools,' Lecture Notes in Computer Science, pp. 17-29. https://doi.org/10.1007/978-3-642-

41106-9_3.

Clarke, M.J. and Wang, C. (2020) Indie games in the digital age. Bloomsbury Publishing USA.

Crawford, L. and University of Edinburgh, School of Informatics, Institute of Computing Systems
Architecture, (2022) 'Shader Optimization and Specialization,' Shader Optimization and
Specialization [Preprint].

Game Engines Evaluation for Serious game development in education (2021a).

https://ieeexplore.ieee.org/document/9559053.

Game Engines Evaluation for Serious game development in education (2021b).

https://ieeexplore.ieee.org/document/9559053.

Granof, C.J. (2021) 'TINSL: Tinsl Is Not a Shading Language,' TINSL: Tinsl Is Not a Shading

Language [Preprint]. https://digital.wpi.edu/concern/etds/rx913s769.
Hasu, J. (2018) 'Fundamentals of Shaders with Modern Game Engines,' Fundamentals of Shaders
With Modern Game Engines [Preprint].

https://lutpub.lut.fi/bitstream/handle/10024/158721/FundamentalsOfShadersWithModernGa

meEnginesJoonaHasu.pdf?sequence=1.

Kasurinen, J., Strandén, J.-P. and Smolander, K. (2013) "What do game developers expect from
development and design tools?,' What Do Game Developers Expect From Development and

Design Tools?, pp. 36—41. https://doi.org/10.1145/2460999.2461004.

Neil, K. (2015) Game design tools : Can they improve game design practice?

https://theses.hal.science/tel-01344638/.

'Rendering pipeline, shaders, and effects' (2009) in Apress eBooks, pp. 227-240.

https://doi.org/10.1007/978-1-4302-1818-0_9.

37

https://doi.org/10.1007/978-3-642-41106-9_3
https://doi.org/10.1007/978-3-642-41106-9_3
https://ieeexplore.ieee.org/document/9559053
https://ieeexplore.ieee.org/document/9559053
https://digital.wpi.edu/concern/etds/rx913s769
https://lutpub.lut.fi/bitstream/handle/10024/158721/FundamentalsOfShadersWithModernGameEnginesJoonaHasu.pdf?sequence=1
https://lutpub.lut.fi/bitstream/handle/10024/158721/FundamentalsOfShadersWithModernGameEnginesJoonaHasu.pdf?sequence=1
https://doi.org/10.1145/2460999.2461004
https://theses.hal.science/tel-01344638/
https://doi.org/10.1007/978-1-4302-1818-0_9

Rieder, C. et al. (2011) 'A shader framework for rapid prototyping of GPU-Based volume rendering,

Computer Graphics Forum, 30(3), pp. 1031-1040. https://doi.org/10.1111/7.1467-

8659.2011.01952 x.

Smith, A., Nelson, M. and Mateas, M. (2009) 'Computational support for play testing game
sketches,' Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, 5(1), pp. 167—172. https://doi.org/10.1609/aiide.v511.12368.

Sobota, B. and Pietrikova, E. (2023) 'The role of game engines in game development and teaching,'

in IntechOpen eBooks. https://doi.org/10.5772/intechopen.1002257.

Toisoul, A., Rueckert, D. and Kainz, B. (2017) 'Accessible GLSL Shader programming,'

Eurographics, pp. 35-42. https://doi.org/10.2312/eged.20171024.

Itd, M. (2012) Engineering play: A cultural history of children’s software. Cambridge, Mass: MIT

Press.

38

https://doi.org/10.1111/j.1467-8659.2011.01952.x
https://doi.org/10.1111/j.1467-8659.2011.01952.x
https://doi.org/10.1609/aiide.v5i1.12368
https://doi.org/10.5772/intechopen.1002257
https://doi.org/10.2312/eged.20171024

Bibliography
I

39

Appendices

40

' Abertay
University

GDPR Research Data Management
Data Sign Off Form

For undergraduate or postgraduate student projects supervised by an Abertay staff member.

This form MUST be included in the student’s thesis/dissertation. Note that failure to do this will

mean that the student’s project cannot be assessed/examined.

Part |: Supervisors to Complete

By signing this form, you are confirming that you have checked and verified your student’s data
according to the criteria stated below (e.g., raw data, completed questionnaires, superlab/Eprime

output, transcriptions etc.)

Student Name: | Dannielle G. Smith

Student Number: | 2101323

Lead Supervisor Name: | Naman Merchant

Lead Supervisor Signature

use in education?

Project title: | Tool creation for an in-house engine:
How does one create a shader/post-processing tool for

PhD

=
Study route:

MbR
il

MPhil
il

Undergraduate
2

PhD by Publication

=

Part 2: Student to Complete

Initial here to confirm “Yes’

| confirm that | have handed over all manual records from my

for archiving/storage

research project (e.g., consent forms, transcripts) to my supervisor

| confirm that | have handed over all digital records from my

archiving/storage

research project (e.g., recordings, data files) to my supervisor for

41

Abel’tay GDPR Research Data Management
UnlveI'SltV Data Sign Off Form

| confirm that | no longer hold any digital records from my research
project on any device other than the university network and the
only data that | may retain is a copy of an anonymised data file(s)
from my research

| understand that, for undergraduate projects, my supervisor may
delete manual/digital records of data if there is no foreseeable use
for that data (with the exception of consent forms, which should be

retained for 10 years)

Student signature :

Date: 30/04/2025

42

Abertay
University

Appendix C(i): Participant Information Sheet and Research Consent Form Template

Project Title: “Tool creation for an in-house engine: How does one create a shader/post-processing tool for
use in education?”

Researcher Name: Dannielle G. Smith

Researcher Supervisor: Naman Merchant

Contact Information: 2101323@uad.ac.uk

What is the research about?

We invite you to participate in a research project about...

You are being invited to participate in a research study to test a new tool used for educational and developmental
use in postprocessing effects and evaluate the ease of use and how it compares to other education means.

The study will help improve the tools development and how it can be used for educational/developmental purposes.

Do | have to take part?

This form has been written to help you decide if you would like to take part. It is up to you and you alone whether
you wish to take part. If you do decide to take part you will be free to withdraw at any time without providing a
reason and without penaity.

What will | be required to do?
If you agree to participate, you will be asked to:

 Complete 2 different work sheets during the allotted time and finish a questionnaire for what you have
learned during the time, there may also be a presentation to start the study off.

e This study will take approximately 1 hr done on a specified date; the date will be given on a later date.

How will you handle my data?

Your data will be stored in an anonymized form and willonly be accessible to Dannielle G. Smith, see contact
details below. This means that nobody including the researchers could reasonably identify you within the data.
Your data will be stored in a secure database, with data fully anonymized at the point of collection. Your
responses are treated in the strictest confidence - it will be impossible to identify individuals within a dataset when
any of the research is disseminated (e.g., in publications/presentations/datasets). Abertay University acts as Data
Controller (DataProtectionOfficer@abertay.ac.uk).

Retention of research data

Researchers are obliged to retain research data for up to 10 years’ post-publication, however your anonymized
research data may be retained indefinitely (e.g., so that researchers engage in open research, and other
researchers can access their data to confirm the conclusions of published work). Consistent with our data retention
policy, researchers retain consent forms for as long as we continue to hold information about a data subject andfor
10 years for published research (including Research Degree thesis).

Consent statement:

Abertay University attaches high priority to the ethical conduct of research. Please consider the following before
indicating your consent on this form. Indicating your consent confirms that you are willing to participate in the
research, however, indicating consent does not commit you to anything you do not wish to do and you are free to
withdraw your participation at any time. You are indicating consent under the following assumptions:

¢ | understand the contents of the participant information sheet and consent form.
* | have been given the opportunity to ask questions about the research and have had them answered
satisfactorily.

¢ | understand that my participation is entirely voluntary and that | can withdraw from the research (parts of
the project or the entire project) at any time without penalty and without having to provide an explanation.

¢ | understand who has access to my data and how it will be handled at all stages of the research project.

43

PLEASE INITIAL BOX:

Yes, | do consent

No, | do not consent

| consent to take part in this study conducted
by Dannielle G. Smith who intend to use
my data for further research examining the
given graphics tools’ development and the
way it will be taught/used.

Signature:

| confirm that | am willing to take part in this research:

PRINT NAME:
SIGNATURE:
DATE:

You can find our procedure for complaints (regarding research projects) and our privacy notice and legal

basis for processing research data at: https://www.abertay.ac.uk/legal/privacy-notice-for-research-

participants/

44

Penny-board GUI work sheet
Objective:

By the end of the lesson, students should be able to:

1. Understand the concept of post-processing shaders in graphics programming.
Use provided post-processing shader tool to modify the final rendered image.
Write basic post-processing shader code to modify the final rendered image.
Implement a few common post-processing effects (e.g., bloom, sepia, grayscale).
Understand the pipeline in which post-processing occurs.

abron

Materials Needed:

e Skateboard engine
e The Penny-board tool
e Text editor orintegrated IDE (Visual Studio)

1. Setting Up a Post-Processing Tool

Objective: Set up the Penny-board tool and familiarize yourself with its features.

1. Run the tool and ensure everything compiles correctly. If there are any issues, ask
your supervisor for assistance.

2. Review the accessibility features and explore them.

e "Penn ¥- Board/Penn ¥ Render.h

pen: :PennyRender screen Renderer)

pen: :PennyRender scene Renderer

Make sure to initialise the renders in the h file of the game level your using.

screen_Renderer_.Init{]);

scene_Renderer_.Init();

Initialize the renders in the level init function, as shown above.

45

er();

firtPass();

screen_Renderer_.rer en(scene_Renderer_.g

T ntOul pult SRVDa .|().l,4-|());

screen Renderer .renderlo eef

. R

end(scene Renderer .getCurrentOutput!

Have the screen used for post-processing effects drawn in the renderer

above img.

seene_Henderer . SetHender

scene_Rendercr_ . Begi

1int32_t Indexdatal J{&,1,2};

std: :vectordpen: :Vertexd movedvertices - wartices)
pen::Inslancelala LesLdala;

testdata. TextureIndex = renderTexture.got()-»Gct

{

scone_Renderer__Or

& a : movedvertices) { a.Position 4=

awvertices (movedvertices. data(), Indexdata, 1, &testdata);

»

mabrix World = glm: :translate(l
Im: : trar
a1, 1

testdata, SpecularColor = Speculars;

testdata. World = World * g

testdata.Colourscale . 1, 8

testdata . SpecularPower = SpecularPower;

testdata.Speculardeight Speculareight ;

r:Wertex Quad[4] =

(8.8,8),float2(e,a),

float3(8,0,0),float2(a,1),
float {:I!'I!I.]J-'-.'-'I{IJ.JJ
at3(8,8,8), float2{1,8),

seene Renderer . DrawVer 4, guadindices, 6, &lesldala);

scene_Renderer_ En

d};

scene_Renderar . SetBendar larpet

oBackBuffer();

)ata(), scene Renderer .getl(u

tputSRVData());

, like shown in the

, scene_Rendersr_, pet

ins(Rotation.x), glr

Make sure to set the render target as shown above before the render begin, after the begin
you can create the scene/ game environment then end the scene and set the render target to

the back buffer.

screen_Renderer . PennyBoard IMGUI() ;

Have the tools GUI added to the IMGUI function in the levels code.

2. Set up Vignette in GUI

Objective: Set up a Vignette effect within the GUI.

Avignette in graphics and photography refers to a visual effect that darkens (or
sometimes lightens) the edges of an image, drawing the viewer's attention toward the

centre. Often used in game for horror or a damage/hurt effect.

1. Run the programme, then open the Penny-board application.

47

¥ Ponny board Graphics (shader toggle toel

Editor Saved Effects list Tool Cus

Screen 5 -r

ocurrentiy implemented Set to default

Render Pass | Render Pass 2 = not in use Rander Pass 3 - not in use

2. ltwill look like this, (go through layout). There is tool tips if you hover above the

chosen area.

Effects selection

Render Pass 1 Render Pasz 2 - not in use Render Pass 3 - not in use

PIXELATE_

VIGNETTE_

48

3. Ensure that vignette has been selected. As shown in the above image.

» scanline

vignektke

innerRadius
outerRadius

opacity

> Posturize

4. Adjustthe innerradius, outer radius, and opacity settings to your preference

Save Settings AS: wvinl

Apply Settings =-- not currently implemented Set to default

Effects seleckion

5. Name your settings/shader and click the Save Settings AS button.

DELETE

¥inl APPLY DELETE

6. The saved effect will appear in the user saved effect List as "vin1" (or the name you
chose).

3. Walking through Vignette

Objective: Walk through the code to explain how the vignette shader is set up and used.

The files used here are located in the pennyboard file and are called “PennyRenderer.cpp”
and “PennyRenderer.h”

--header-
Skateboard: : MultiResourcedSkateboard : : BuTfferRe> VignettingDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> VignettingDataBuffer;

BufferViewDesc vipnetting desc;

VignettingBuffer m VignettingBuffer = VignettingBuffer();

With-in the header the buffer ref, buffer view description and the struct

“m_VingnettingBuffer” used to contain all the data/values the buffer will be passing along to

the shaders, are initialised.

-- init everything/buffer --

49

The buffer slot used for passing all the values is initialized/set using the layout and is slot 2
as show above.

-raster pipeline

PennyRender: : Init ShaderPermutation(RasterizationPipelineDesc Raster) {

16 L p=@; p < EFFECT PERMUTATIONS; p++)

RSPD = Raster;

RSPD.DepthStencil .DepthEnable = |

This is where the pipelines differ. As shown above this will loop for the number of pixel

shaders/effects to create pipelines for each of them as pixel shaders can't be swapped out

of a pipelinein directX12.
VIGNETTE_:

RSPD.SetPixelShader(L"vignetting_ps®);

-'j

PipelineDesc PiplDesc;
PiplDesc.GloballayoutSignature = RootSig;
PiplDesc. Type PipelineType_ Graphics;
PiplDesc.TypeDesc = &RSPD;

Pipelines[p] ResourceFactory: :CreatePipelineState(PiplDesc);

This is where the pipeline is created within the loop, having the discription of the pipeline
being made first.

Buffers{bufferdesc);

VignettingDataBuffer ForEach([&])({BufferRefi ref)

B o wnnl Dy Cpuiile i le | Ressmirs ohi 0 eonnl Dag Cpnifesil,

After the pipelines were initialized, it is then the buffers turn. Using the InitBuffers function,
the vignette buffer is created. Making sure that it can write to the cpu and read to the gpu,
with the buffers size coming from the size of the struct used for the buffer.

nitData{InstanceDataBuffersize);

vignetting desc . TnitAsStructuredBuffer<Vignett ingBuffer>(offset, InstanceDataBuffersize [F{vignettingBuffer));

The description of the buffer is then set/initialized using the buffers struct and the struct
size.

50

VignettingDataBuffer_Inc
In the begin the IncrementCounter is called for the vignetting buffer to consistently update
the buffer every frame. (basically it “takes” the buffer to the next frame) ///change this to be
more understandable

(CURRENT _STATE_)

i

VIGHETTE :

raphlcsContext : :(Bul fer(Vignet LingDataBul fer. Get (). get (), (VignettingBuffer), &m VignettingBuffer);

At the end the values are all copied/passed into the buffer and to make sure it's the right
buffer/pipeline a switch statement is used.

//- drawing

(CURRENT_STATE_)}

WIGHETTE_:

{4, VignettingDatabBuffer.((lepget(), wignetting desc, ViewhccessType ConstantBuffer);

When ”drawing” with this renderer the resource view is also set, taking in the data buffer
data, the buffers description and the type of view access it is (all our effect view assesses
are going to be a constant buffer).

/! --the shader

Shaders/5tructs.hlsli™

ConstantBuffer<Constants® PushData : register(b®, space@d):

StructuredBuffer<InstanceData>» Instances : regist l'r'{.iﬁ » Spac :-H} a

ConstantBuffer<vignettingPara> Parameters : register(b2, spacef):

51

//setting values

Setting all the values being used from the buffer we just looked at, as well as getting the
texture from the instance data.
Getting the Image Pixel Color, It looks up the color of the current pixel from a texture.

Vertical Fade Effect

This line creates a vertical dimming (fade) by using a sine wave on the y-position of the pixel:
Pixels at the top and bottom are dimmer.

The center stays brighter.

Convert to Center-Based Coordinates
To make the vignette, it needs to know how far each pixel is from the screen center:
Now the center of the screen is (0,0), and the corners are closer to (x1, £1).

Calculate Distance from Center
This calculates how far a pixel is from the center, like drawing a circle:

Smooth Transition Between Radii

It figures out how close the pixelis to the outer edge (based on innerRadius and
outerRadius), then fades it smoothly. This creates the vignette gradient—pixels near the
center stay bright; those near the edge darken.

Apply Both Effects

It multiplies the pixel color by:
the vignette effect (factor)

the vertical fade (verticalDim)

Blend With Original Based on Opacity

Using the opacity value:

It mixes the original color and the vignette result.

Low opacity means almost no effect; high opacity means strong vignette.

Then the final step adds the two colors together to create the final pixel color for the screen.
That it done, and it will then render to screen.

52

5. Do it yourself with another shader

Objective: Create a custom effect using the GUI, and, if desired, explore the code to see

how the shader/s is constructed. Chose a brief bellow.

e 1. Create a night-time environment in a game, how would you use post-processing
effects like fog, ambient light adjustments, and colour filters to enhance the
atmosphere?

e 2. Create adream-like sequence, what post-processing effects would you

combine (e.g., blurring, soft lighting, colour shifts) to achieve that effect?

6. Do the questionnaire

Objective: Fill out the questionnaire.

Thank you for completing the worksheet. Please turn this in with the questionnaire.

53

Questionnaire:

Section 1: Basic Shader Concepts:

1.1. What is the main purpose of shaders in graphics programming?

1.2. What is the difference between a vertex shader and a fragment/pixel shader?
1.3. When/where are post processing effects used the most?

1.4. Please name 1 postprocessing effect. / Write/list down as many postprocessing effects
you know.

1.5. What is a post-processing effect?
1.6. How do post-processing effects enhance the visual appeal of a scene orimage?

Section 2: Applied Concepts:

2.1. What is the process for combining two textures in a shader, specifically when adding
one texture's pixel colour to another? Please outline the steps involved.

2.2. Describe the steps involved in creating a bloom effect.
2.3. What is the impact of using multiple layers of post-processing effects on frame rates?

2.4. You are tasked with creating an apocalyptic environment in a game. How would you
utilize post-processing effects for example desaturation, and colour grading to convey and
enhance the atmosphere?

2.5. How would you enhance the sense of danger and urgency in the environment using
post-processing effects to emphasize chaotic or deteriorating conditions?

Thank you for completing the questionnaire. Please turn this in with the worksheet.

54

Questionnaire:

Section 1: Basic Shader Concepts:

1.1. What is the main purpose of shaders in graphics programming?

1.2. What is the difference between a vertex shader and a fragment/pixel shader?
1.3. When/where are post processing effects used the most?

1.4. Please name 1 postprocessing effect. / Write/list down as many postprocessing effects
you know.

1.5. What is a post-processing effect?

1.6. How do post-processing effects enhance the visual appeal of a scene orimage?

Section 2: Applied Concepts:

2.1. What s the process for combining two textures in a shader, specifically when adding
one texture's pixel colour to another? Please outline the steps involved.

2.2. Describe the steps involved in creating a bloom effect.
2.3. What is the impact of using multiple layers of post-processing effects on frame rates?

2.4.You are tasked with creating an apocalyptic environment in a game. How would you
utilize post-processing effects for example desaturation, and colour grading to convey and
enhance the atmosphere?

2.5. How would you enhance the sense of danger and urgency in the environment using
post-processing effects to emphasize chaotic or deteriorating conditions?

2.6. how do you feel you did on task 5? Describe what you did and how you feel about the result
and using the tool with no assistance or instructions.

Section 3: Ease of use:

3.1. How easy was the Ul to navigate. In your opinion was the layout easy to
understand/accurately labelled.

3.2. Does the tool offer a smooth learning curve with onboarding tutorials, hints, or tooltips to
help new users?

55

3.3. Are the documentation or help features easily accessible for users who need assistance?

3.4. Does the GUI respond quickly to user input without delays? Or does the tool crash or freeze
often?

3.5. Are tasks streamlined in a logical, step-by-step manner to avoid confusion or redundant
actions?

3.6. Would customization options interest you?

4. This is where you can say anything you particularly liked or disliked about the tool as well as
any changes you would like to see made, this is not mandatory but appreciated.

Thank you for completing the questionnaire. Please turn this in with the worksheet.

56

Penny-board Plug-in

Manual
Honours

57

Dannielle G. Smith
2101323

Table of Contents

58

59

Setting up the tool

pen: :PennyRender screen_Renderer

pen: :PennyRender scene Renderer

Make sure to initialise the renders in the h file of the game level your using.

screen_Renderer_.Init{]);

scene_Renderer_.Init();

Initialize the renders in the level init function, as shown above.

screen_Renderer_.rer Screen(scene_Renderer_. getl tOutput SRVData() .Get());

screen Renderer .renderloScreen end(scene Renderer .getCurrentOutputRIVData(), scene Renderer .pgetl

Have the screen used for post-processing effects drawn in the renderer, like shown in the

above img.

60

scene_Henderer . SetRender |arpets .getCurrentiutput Texture() , scene_Hemderer . pet

scene_Renderer_.Begin();

std: :wector e vedvartices - wartices)
pen:: Inslancelala LesLdala;

testdata. TextureIndex = renderTexture.get (- 6ot Vicw]

{ & a :

scene_Renderer_ ti [(movedvertice atal) » Btestdata);

mabrix World = glm::Lranslabel
testdata World = World * glm::trar at 1 Iy - s, 8)) glm: : o :réngleXyZ{glm: : radians (Rotation. x)

-, Eir
testdata.Colourscale

testdata, SpecularColor = Speculars;

testdata . Specular| r = SpecularPower;

testdata. Speculardeight - Speculardeight;

pen:VWertex Quad|4] =

seene Renderer | Drawierl i o 4, guadindices, &, &lesldata);

scene_Renderer_ End();

seene_Renderar . SetRendar Tarpet

Make sure to set the render target as shown above before the render begin, after the begin
you can create the scene/ game environment then end the scene and set the render taget to

the back buffer.

screen_Renderer . PennyBoard IMGUI() ;

Have the tools GUI added to the IMGUI function in the levels code.

The tool should now work.

61

Ul

GUI layout
Editor tabs

Selected area

Description

Preview screen

A small screen that shows the current settings.

Save settings As - button

Save current settings with the name given in the adjoining box.

Save settings - name

space

Text box that contains the tag/name the user types in.

Apply settings - button

Apply current settings to the game screen, not just the preview screen.

Set to default - button

Set all settings to their default.

Effects in use list -

section

The section where all the post-processing effects are toggled on or off.

62

- Offset sliders

Set the offset wanted on the chromatic aberration. There is one for the x-axis and one for

they.

- Sample No. slider

Slide the slider to choose the number of samples the down sampler will take.

-Colour picker

Pick the colour you want to use for the chromatic aberration effect.

Selected area

Description

63

Saved lists tab

¥ Penny_bosrd Graphics (

shader toggle tool

Editor Seved Effects list Teol Cus

Soresmsi2e / 2

tly implemanted

Tool customizer tab

64

™

Tosl Cus

65

66

¥ Penny_board Graphics (shader btoggle tool)

Editor Saved Effects list Teal Cus

Proggyclear

How the GUI is set-up

//--

67

Texturelarrier renderTorpetborrier|};
renderTe tharri e fore SKTHD_SYNC NENOUR_TARGET;
rendertargetiarrior, SKTOD_SYNC PIXEL SHADING;
jortarget Bar sHeto: SKTHO ACCESS HENDER TARGET;
renderTargetBarrior. Ac SKTBD ACCESS COMMON;
renderTargetBarri outbefore - SKTBD LAYOUT REMDER TARGET;
renderTargetBarrier, wtAfter - SKTBD LAYOUT COMMON;
renderTa 4 ier . Resource Owtput Texture, {

render Targe ubresourcerange = Texd

HarriorGroe grouptoRiv(Rrendertarge

of : s (kgroupton

ImGui 104

eviowsc

previews

wv_win
v_max
tint col 1 color for tint r y 2 (InGuicCol rext)

border col

(wy tex id (fa in, v max, tint col, border col);

ment befor

/1]---

- current

(P IXLALE

(TR

N IRWENAD

(HLUR GM

69

70

10T

71

72

TmGut::

i ¢ t*)&m BlurGauBuffer.Luminance,

changes the brightness

ImGui::Checkbox("ALL weight linked"”, &link weight);

ImGul::Setitem

(link weight

wltip("1f yes the blur will be even throughout

true) {

iderFloat("weight_all™, (*)&weight_all, o, 0.4);
coltip("--");
ices; in){

m_BlurGauBuffer.weight|[i] = weight_all;

t*)&m_BlurcauBuffer.weight[o],
the point being blurred/ the orign®

lerFloat("weight 1", (f1 *)&a BlurGauBuffer.weight[1],
ImGul: It
ImGui : :$1ider at h y 1t *¥)&m BlurGauBuffer.weight|2], 8,

ImGui::Setl

ImGui::SliderfFloat(” ht 3 t*)8m BlurcauBuffer.weight[2], o,

\mTo0 ";(“Hiuh ¢ point of blur, close to the nrign of the WIHF");

3.4);

)3

ImGui::Setitemiooltip(“Middle point of blur, close to the edge of the blur™);

ImGui::S erf "weight 4" fl *)&a BlurGauBuffer.weight[2], o, o.

ImGui: :SetIt 1t the point being blurred”);

4);

73

Klink M

DlurGeutuf fer. texscrmultiplier]|

plurca ffor.texscrmultiplier|
il y the

PlurGastiuf fer

sultiply t

Blurcastuf fer, texscr

wul

BlurGaetuf for scrmultiplier|

wul t o

BlurGaskuffor, texscrmultiplior|

sl

will be 1

*Y8aberrat fow
u

n_Owonatreetiut for, aberrat y = atorratiosactor XY

n_Chronatruenuf fer aberrat r e ral ioof actor XY;

*)an Chromalrectuf for. aborrat tonfactor x,
i w of X ax
*)8m ChromaTreebuf for, aberrat tonToctor vy,

1t in tores of they axis

chromat icweightsl|
chromaticweightsa|1

chrosaticWelightsl|
ights2|

ightea]1

welghtsa[

& ChrosaStylizedsuf

® ChrosaStylizedbuf

Lot fset Xy

Hiset Xy

offsetlink

Cheomat ol ght

for the £

chromat f e lght

X - yliaediutfer , chromat |

y omas Tyl d zediuf fer, chromat |

Ffset X¥.y » chromaticO
L2ediiutfor . chrosaticod# ’ wromat i oo

Jediiut for chrosat LcOffeot chromat ic

Bt for chromat Leoffsetl WEset XV x

rediuffer, chrom HFeel XY,y

*Mchromat §

* Mchromat

maitylizedbul fer . chrom . oot 1cOF f se

tylizeduf fer.chroms

izediiuf for .chromaticof

editutfor . cheosat i cOf+

f, chromaticwelightst

75

y Ll zecBuffe

ylizeduutfor

Chromat |«

cheomat i

A feell

MWioely

LN
") (

hromaity Lizedbet fe

hromeStylizedbef fe

sty L zeuffer, o hrom

-

J&m Che
) Chye
) Che

Hizsduffor c hromat

omarSty Hizedbutf
oSty lizedBuf fer

sy L zedBuf fer

* o _Chromasty D aediuffer

«chrosaticOH 1

«chrosaticol fsetl.

osaticOffset1.
omat Lcof fsett
et L cOf fset2

omat Looffaet

76

f (ImGui::TreeMode{"6lass Panel™)) {
m_GlassBuffer;

TmiGui: s Che bn::("ih pixle hbibh1 and width linked™, Epann]inkﬁd};

ImGui: ;SetTtenTooltip"This makes the individual "pannels’ squares with the hight equaling the width™);

(panelinked = true) {

ImGui: :sliderFloat{"pannel size™, (*)ia_GlassBuffer.panelsize.x, @, 20);
ImGui: :SetTtemTooltip("The higher the number the smaller the square texture of the

m_classBuffer.panelsize.y = m_GlassBuffer.panclsize.x;

(ImGui: : TreeNode("Square Texture size more™)) {

liderFloat{"panncl width™, (t*)8&m_classBuffer.panelsize.x, @, 2@)
etTtemTooltip{“How wide the individual pannel textures are™);
liderFloat{"pannel height™, (1t*)Em_GlassBuffer.panelSize.y, @, 28);

ctTtemTooltip(“How high/tall the individual pannel textures are™);

Ul s i TreePopl)s

n_Pixelduffer.pixelSize;

inked”, &pixelinked);

(pixelinked

1%)ie Pixelduffer.pixelsize.x,

\ Itemic (" igt the mmber the umalle

m PixelBuffer pixelsize.y = m Pixelduffer.pixelSize. x;

"Yam Pixelbuffor,.pleelsize.
Ldividual pixles are”);
e Pixelauffer.pixelsize.y,

(1mouic

78

1); w_ming uv_max, tint_col, border col);

: tPennyBoardIMGUI() {

n("Penny board Graphics (

s

inTabBar("#stabs”, ImGuiTabBarFlags_None))

§ Effects 1ist")) {

80

Renderer Code

Popping open the engine/hood // under the hood

“Skateboard/Graphics/RHI/ResourceFactory.h”

“skateboard/Graphics/RHI/RenderCommand.h"

“Skateboard/Renderers/Renderer.h”

¢ Skateboard;

Buffer stuff

Buffer Struct

struct ScreenBuffer //ScreenPara //b2

{

float2 screenSize_;

float2 padding; //edit later

//ScreenBuffer() { padding = float2(1200, 800); screenSize_ = float2(1200, 800);}
ScreenBuffer() { padding = float2(1l.f, 1.f); screenSize_ = float2(1366, 768); }

1

Screen buffer passes through the screen size to any potential shader if initialised

struct ScanlineBuffer//scanlinePara //b3 { float2 screenSize_; float LineThickness_; float

DimmedFactor_;

float transferPower_;
float vertical_;
int PushData_instanceNo;

float padding;

ScanlineBuffer() { PushData_instanceNo = ©; screenSize_ = float2(1366, 768);

LineThickness_ = 3.f; DimmedFactor_ = 0.5; transferPower_ = ©; vertical_= 0.5; }

ScanlineBuffer(float linethickness) :

81

ScanlineBuffer() {
LineThickness_ = linethickness;
}
ScanlineBuffer(float linethickness, float dimmedFactor) :
ScanlineBuffer(linethickness) {
DimmedFactor_ = dimmedFactor;
}
ScanlineBuffer(float linethickness, float dimmedFactor, float transferPower) :
ScanlineBuffer(linethickness, dimmedFactor) {
transferPower_ = transferPower;
}
ScanlineBuffer(float linethickness, float dimmedFactor, float transferPower, float
vertical) :
ScanlineBuffer(linethickness, dimmedFactor, transferPower) {

vertical = vertical;

1

struct VignettingBuffer//vignettingPara //b4 { float2 screenSize_; float2 padding;

float innerRadius;
float outerRadius;
float opacity;

int PushData_instanceNo;

VignettingBuffer() { PushData_instanceNo = ©; screenSize_ = float2(1366, 768); innerRadius
= 0.f; outerRadius = 0.4; opacity = 0.8f; padding = float2(0,0); }
¥

struct PosterizeBuffer//posterizePara //b5
{

float3 step_areas;

int PushData_instanceNo;

PosterizeBuffer() { PushData_instanceNo = @; step_areas = float3(3.8f, 1.4f, 0.2f); }

82

1

struct BloomBuffer //bloomPara
{

int PushData_instanceNo;

int width;

float angleSteps;

float radiusSteps;

float ampFactor;

float3 padding;

BloomBuffer() { PushData_instanceNo = ©; width = 20; angleSteps = 20; radiusSteps = 20;
ampFactor = 1.25; }
¥

struct Bloom2Buffer //bloom2Para
{

int PushData_instanceNo;

float ampFactor;

float threshold;

float paddinge;

Bloom2Buffer() { PushData_instanceNo = @; ampFactor = 1; threshold = ©0.24; paddinge = 0; }
¥

struct BlurGauBuffer //blurGauPara //
{

float Luminance;

float2 screenSize_;

float padding@;

//float weight[5];

//float paddingl[3]; // padding to align next array
//float texscrMultiplier[5];

//float padding2[3]; // padding for alignment

83

float weight[8]; //last values are padding
float texscrMultiplier[8];//last values ar padding

BlurGauBuffer() {

for (int i = 0; i < 8; i++) { weight[i] = 0.2; float placeholder = i; texscrMultiplier[i] =
placeholder / 4; }

paddingd = @; screenSize_ = float2(1366, 768); Luminance = 0.4;

}

}s

struct ChromaTrueBuffer //ChromaTruePara { int PushData_instanceNo; float2 screenSize_; float

aberrationFactor;

float aberrationFactor_x;
float aberrationFactor_y;

float2 padding; // padding for alignment

ChromaTrueBuffer() { PushData_instanceNo = 0; screenSize_ = float2(1366, 768); padding =
float2(0,0); aberrationFactor = ©.009; aberrationFactor_x = ©.5; aberrationFactor_y = 0.5; }
¥

struct ChromaStylizedBuffer //ChromaStylizedPara
{ //might not need arrays - matters how

customizable i want it

int PushData_instanceNo;

float3 paddinge;

float4 chromaticWeightsil;
float4 chromaticWeights2;
float4 chromaticOffsetl;
float4 chromaticOffset2;

ChromaStylizedBuffer() {

//for (int 1 = 0; i < 1; i++)

84

{
chromaticOffsetl

chromaticOffset2

float4(@.01, 0.01, 13, 0);
float4(-0.01, -0.01, 13, 0);
chromaticWeightsl = float4(e.2, 0.2f, 0.f, 0.25);
chromaticWeights2 = float4(@.2f, ©.f, 0.2, 0.25);

}
paddingd = float3(0,0,0);

PushData_instanceNo =0;
}
s

struct ColourGradBuffer //colourGradPara

{

int PushData_instanceNo;

float3 padding@o;

float3 startColor;
float paddingil;

float3 endColor;
float padding2;

ColourGradBuffer() { startColor = float3(1, 1, 1); endColor = float3(1.2, 0.01, 0.51);
PushData_instanceNo = 0;

}

¥

struct EmbossBuffer //EmbossPara {

int PushData_instanceNo;
float2 screenSize_;

float paddinge;

int greyScale;
float width_;

float height_;
float paddingl;

EmbossBuffer() { PushData_instanceNo = ©@; screenSize_

float2(1366, 768); greyScale =
true; width_ = 400; height_ = 400; padding® = 0; paddingl = 0; }

1

struct GlassBuffer //glassPara { int PushData_instanceNo; float2 screenSize_; float2

panelSize;

float2 padding; // for alignment
GlassBuffer() { PushData_instanceNo = ©; screenSize_ = float2(1366, 768); panelSize =

float2(10, 10); padding = float2(10, 10); }
¥

struct PixelBuffer //pixelPara { int PushData_instanceNo; float2 screenSize_; float2

pixelSize;

float2 padding; // for alignment

PixelBuffer() { PushData_instanceNo = 0; screenSize_ = float2(1366, 768); pixelSize =
float2(200, 200); padding = float2(200, 200); }

1

struct SavedEffect {
//string SavedName;
const char* SavedName;

ShaderToggles EffectInUse;

ScreenBuffer screen_buff;
ScanlineBuffer scanline_buff;
VignettingBuffer vignet_buff;

PosterizeBuffer posterize_buff;

BloomBuffer bloom_buff;

Bloom2Buffer bloom2_buff;

BlurGauBuffer blurGauBuffer_buff;
ChromaTrueBuffer chromaTrue_buff;
ChromaStylizedBuffer chromaStylized_buff;
ColourGradBuffer colourGrad_buff;
EmbossBuffer emboss_buff;

GlassBuffer glass_buff;

PixelBuffer pixel buff;

1

struct Vertex

{

float3 Position;
float3 Colour;
float2 UV;
float3 Normal;

//default colour is white

Vertex() : Position(@, ©, @), Colour(e, 0, @), UV(0, @), Normal(e, @, @) {}

Vertex(float3 pos) : Vertex() { Position = pos; }

Vertex(float3 pos, float3 col) : Vertex(pos) { Colour = col; }

Vertex(float3 pos, float3 col, float2 uv) : Vertex(pos, col) { UV = uv; }

Vertex(float3 pos, float3 col, float2 uv, float3 normal) : Vertex(pos, col, uv) { Normal = normal; }

static BufferLayout VertexLayout()

{

return {

{ POSITION, ShaderDataType_::Float3 },
{ COLOUR, ShaderDataType_::Float3 },
{ TEXCOORD, ShaderDataType_::Float2 },
{ NORMAL, ShaderDataType_::Float3 },
}s

}

}s

enum LightType : uint32_t

{
LightDirectional = o,

87

LightPoint = 1,
LightSpot = 2,
s

struct InstanceData

{
matrix World;

float4 ColourScale;

int TextureIndex;

float4 SpecularColor;
float SpecularPower;

float SpecularWeight;

InstanceData() { World = glm::identity<glm::mat4x4>(); ColourScale = float4(1, 1, 1, 1); SpecularColor =
float4(1, 1, 1, 1); TextureIndex = 1; SpecularPower = 1.f; SpecularWeight = 1; }
s

struct Light

{

public:

float4 DiffuseColour;
float4 Attenuation;

float3 LightPosition;

float InnerCone;

float3 LightDirection;

float OuterCone;

private:

float2 Padding;
public:

float FalloffPower;
uint32_t LightType;

static float4 AttenuationDefaults() { return { ©.05f, 0.01f, 0.001f, 100.f }; }
s

struct FrameData

{

glm: :matdx4 ViewMatrix;
glm: :mat4x4 ProjectionMatrix;

3

struct Frame //change to be more like screen fram in raytracer

{

FrameData Matrices;

matrix CameraMatrix;
uint32_t LightCount;
float3 AmbientLight;
¥

static SamplerDesc AnisotropicSampler(uint8_t anisotropy, SamplerMode_ U, SamplerMode_ V)

{

return
{
.Filter = SamplerFilter_::SamplerFilter_Anisotropic,
.ModeU = U,
.ModeV =V,
.Model =V,

.MipMapLevelOffset = 0.f,
.MipMapMinSampleLevel = 0O.f,
.MipMapMaxSampleLevel = 10.f,
.MaxAnisotropy = anisotropy, // Valid range 1 - 16 -> uint32_t cause padding anyways
.ComparisonFunction = SamplerComparisonFunction_Less_Equal,
.BorderColour = SamplerBorderColour_TransparentBlack,
.Flags = 0,
¥

static SamplerDesc LinearSampler(SamplerMode_ U, SamplerMode_ V)

{
auto sampler = SamplerDesc::InitAsDefaultTextureSampler();
sampler.ModeU = U;
sampler.ModeV = V;
return sampler;
}

89

static SamplerDesc PointSampler(SamplerMode_ U, SamplerMode_ V)
{
auto sampler = SamplerDesc::InitAsDefaultTextureSampler();
sampler.Filter = SamplerFilter_::SamplerFilter_Comaprison_Min_Mag_Mip_Point;
sampler.ModeU = U;
sampler.ModeV = V;

return sampler;

//post-processing pipelines + "toggles"

enum ShaderToggles : uintl6_t

{
//-- post-proccessing effects // shaders
PIXELATE_ = @,
POSTERIZE_ = 1,
SCANLINE_ = 2,
VIGNETTE_ = 3,
BLOOM_ = 4,
CHROMABER_TRUE_ = 5,
CHROMABER_STYLE_ = 6,
COLOURGRAD_ = 7,
GLASS_ = 8,
EMBOS_ = 9,
BLUR_GAU_ = 10,
POSTPROSSESSING_ = 11
//TEST_ = 1 << 10
//--

s

ENUM_FLAG_OPERATORS (ShaderToggles);

90

constexpr static ShaderToggles DEFAULT_STATE_ = POSTPROSSESSING_;

constexpr static uintl16_t EFFECT_PERMUTATIONS = 12U;//(PIXELATE_ | POSTERIZE_ | SCANLINE_ | VIGNETTE_ |
BLOOM_ | CHROMABER_TRUE_ | CHROMABER_STYLE_ | COLOURGRAD_ | GLASS_ | EMBOS_ | BLUR_GAU_ |
POSTPROSSESSING_) + 1;

Setting up the buffers

//normal rendering

Skateboard: :PipelineRef NormalVisualizer;

size_t DynamicBufferSize = 64 * 1024;
size_t InstanceDataBufferSize = 64 * 1024;

Skateboard: :MultiResource<Skateboard: :BufferRef> TriangleDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> InstanceDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> LightDataBuffer;

// post-processing buffers

size_t pennyBufferSize = 64 * 1024; //

//Buffer refs

Skateboard: :MultiResource<Skateboard: :BufferRef> ScreenDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> ScanlineDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> VignettingDataBuffer;

Skateboard: :MultiResource<Skateboard: :BufferRef> PosterizeDataBuffer;

Skateboard: :MultiResource<Skateboard: :BufferRef> BloomDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> Bloom2DataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> BlurGauDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> ChromaTrueDataBuffer;

Skateboard: :MultiResource<Skateboard: :BufferRef> ChromaStylizedDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> ColourGradDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> EmbossDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> GlassDataBuffer;

Skateboard: :MultiResource<Skateboard: :BufferRef> pixelDataBuffer;

// desc

BufferViewDesc screen_desc;
BufferViewDesc scanline_desc;
BufferViewDesc vignetting_desc;

BufferViewDesc posterize_desc;

BufferViewDesc bloom_desc;
BufferViewDesc bloom2_desc;
BufferViewDesc blurGau_desc;

BufferViewDesc ChromaTrue_desc;

BufferViewDesc ChromaStylized_desc;
BufferViewDesc colourGrad_desc;
BufferViewDesc Emboss_desc;

BufferViewDesc glass_desc;

BufferViewDesc pixel_desc;

// init buffer structs

ScreenBuffer m_ScreenBuffer = ScreenBuffer();
ScanlineBuffer m_ScanlineBuffer = ScanlineBuffer();
VignettingBuffer m_VignettingBuffer = VignettingBuffer();

PosterizeBuffer m_PosterizeBuffer = PosterizeBuffer();

BloomBuffer m_BloomBuffer = BloomBuffer();
Bloom2Buffer m_Bloom2Buffer = Bloom2Buffer();
BlurGauBuffer m_BlurGauBuffer = BlurGauBuffer();

ChromaTrueBuffer m_ChromaTrueBuffer = ChromaTrueBuffer();

ChromaStylizedBuffer m_ChromaStylizedBuffer = ChromaStylizedBuffer();
ColourGradBuffer m_ColourGradBuffer = ColourGradBuffer();
EmbossBuffer m_EmbossBuffer = EmbossBuffer();

GlassBuffer m_GlassBuffer = GlassBuffer();

PixelBuffer m_PixelBuffer = PixelBuffer();

// Pipeline default sate inti

ShaderToggles CURRENT_STATE_ = DEFAULT_STATE_;//

//ShaderToggles CURRENT_STATE_Pass[EFFECT_PERMUTATIONS];// DEPTH_TEST;

//ShaderToggles CURRENT_STATE_Pass[5] = { DEFAULT_STATE_ ,DEFAULT_STATE_ ,DEFAULT_STATE_
,DEFAULT_STATE_ ,DEFAULT_STATE_ };

92

//inline view desc
BufferViewDesc sbvdesc;
BufferViewDesc lightsbvdesc;

BufferViewDesc cbvdesc;

//resterizer

SamplerDesc StaticSamplerDesc = SamplerDesc::InitAsDefaultTextureSampler();

//counts offsets for dynamic data uploaded every frame

size t m_Offset = ROUND_UP(sizeof(FrameData), GraphicsConstants::CONSTANT_BUFFER_ALIGNMENT);

//forked on each call with a unique data pointer/ otherwise default instance data is used

uint32_t m_InstanceDataForks 0;

Frame m_Frame{ .AmbientLight = { 0.1, 0.1, 0.1} };

FrameData m_CameraData{};

std::vector<Light> m_Lights;

InstanceData m_DefaultInstanceData = InstanceData();

uint32_t m_DefaultTextureIDX = O;

bool m_Pipeline_dirty;

bool m_VisualiseNormals = false;// probs delete

Rendering & Post-Processing Pipeline Variables Documentation
This section documents the state and buffer declarations for a post-processing rendering pipeline built
with the Skateboard engine framework. It includes buffers for scene rendering, post-processing effects,

light data, and dynamic frame updates.

Normal Rendering Pipeline

Skateboard: :PipelineRef NormalVisualizer;

Purpose: Pipeline reference for rendering scene geometry with standard or visual debug shaders (e.g.,

normal visualizations).

93

Dynamic & Instance Buffers
size_t DynamicBufferSize = 64 * 1024;
size_t InstanceDataBufferSize = 64 * 1024;

DynamicBufferSize: Memory allocated for frame-dependent dynamic data (e.g., camera info, light count,
etc.).

InstanceDataBufferSize: Storage for per-instance data such as transform matrices or material properties.

Scene Buffers
Skateboard: :MultiResource<Skateboard: :BufferRef> TriangleDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> InstanceDataBuffer;

Skateboard: :MultiResource<Skateboard: :BufferRef> LightDataBuffer;

TriangleDataBuffer: Stores vertex/index data or triangle-level metadata for rendering.
InstanceDataBuffer: Holds data for each instance rendered this frame.

LightDataBuffer: Contains information on dynamic and static lights (position, color, intensity).

Post-Processing Buffers

size_t pennyBufferSize = 64 * 1024;

A general-purpose allocation size used for each post-processing buffer

ach effect has its own BufferRef stored in a MultiResource (multi-frame resource safe for double/triple

buffering):

Skateboard: :MultiResource<Skateboard: :BufferRef> ScreenDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> ScanlineDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> VignettingDataBuffer;

Skateboard: :MultiResource<Skateboard: :BufferRef> PosterizeDataBuffer;

//Bloom and blur type effects

Skateboard: :MultiResource<Skateboard: :BufferRef> BloomDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> Bloom2DataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> BlurGauDataBuffer;

// Chromatic effects

94

Skateboard: :MultiResource<Skateboard: :BufferRef> ChromaTrueDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> ChromaStylizedDataBuffer;

Skateboard: :MultiResource<Skateboard: :BufferRef> ColourGradDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> EmbossDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> GlassDataBuffer;
Skateboard: :MultiResource<Skateboard: :BufferRef> pixelDataBuffer;

Buffer View Descriptions
BufferViewDesc screen_desc;

BufferViewDesc scanline_desc;

BufferViewDesc pixel_desc;

Purpose: Describe how each buffer is viewed by the GPU (CBV, SRV, UAV, etc.).

Each effect has a corresponding descriptor that links the CPU-side buffer to a GPU-side resource binding.

Buffer Struct Instances
ScreenBuffer m_ScreenBuffer;

ScanlineBuffer m_ScanlineBuffer;

PixelBuffer m_PixelBuffer;

These structs hold initialized per-effect data, ready to be copied to their corresponding GPU buffer
before a draw or dispatch.
Initialized once here, but typically updated each frame with relevant scene-dependent values (resolution,

animation, toggles).

Pipeline State Tracking
ShaderToggles CURRENT_STATE_ = DEFAULT_STATE_;

Tracks the active shader features or combinations (toggle flags).

Could include toggles like USE_VIGNETTE, ENABLE_BLOOM, or VISUALIZE_NORMALS.

Global Buffer Descriptors
BufferViewDesc sbvdesc; // Screen-space descriptor (scene buffer)

BufferViewDesc lightsbvdesc; // Light buffer descriptor

95

BufferViewDesc cbvdesc; // Constant buffer descriptor (camera/frame)

Purpose: Low-level descriptor used when binding data to GPU pipeline.

Abstracts away root signature or descriptor table details.

Sampler State

SamplerDesc StaticSamplerDesc = SamplerDesc::InitAsDefaultTextureSampler();

Default sampler used in pixel shaders.

Typically includes linear filtering and clamp addressing.

Frame-Dependent Data
size_t m_Offset = ROUND_UP(sizeof(FrameData), GraphicsConstants::CONSTANT_BUFFER_ALIGNMENT);

Computes aligned offset for frame-constant buffers.

Ensures safe and efficient memory writes per-frame.

Instance Forking (Instancing)

uint32_t m_InstanceDataForks = 9;

Tracks the number of times instance data has been duplicated this frame (e.g., for branching visual

states, special effects).

Scene Lighting and Frame Metadata

Frame m_Frame{ .AmbientLight = { 0.1, 0.1, 0.1} };
FrameData m_CameraData{};

std::vector<Light> m_Lights;

InstanceData m_DefaultInstanceData = InstanceData();

m_Frame: Global frame constants, including ambient lighting.
m_CameraData: Per-frame camera matrices and frustum data.
m_Lights: Collection of point/spot/directional lights in the scene.

m_DefaultInstanceData: Used when no override is supplied during rendering.

Texture Binding Default
uint32_t m_DefaultTextureIDX = O;

Fallback or default texture index used when no texture is explicitly bound to a material or instance.

96

Render State Dirty Flag

bool m_Pipeline_dirty;

If true, the rendering pipeline or shader bindings need to be recompiled or rebound before the next

frame.

Debug Toggle for Normals

bool m_VisualiseNormals = false;

When enabled, shaders visualize surface normals—useful for debugging lighting or tangent-space

calculations.

void InitBuffers(BufferDesc bufferdesc) {

//ScreenDataBuffer Buffer
bufferdesc.Init(pennyBufferSize, ResourceAccessFlag CpulWrite | ResourceAccessFlag_GpuRead);

ScreenDataBuffer.ForEach([&] (BufferRef& ref) {ref = ResourceFactory::CreateBuffer(bufferdesc);
s

//ScanlineDataBuffer Buffer
ScanlineDataBuffer.ForEach([&](BufferRef& ref) {ref = ResourceFactory::CreateBuffer({

.AccessFlags = ResourceAccessFlag_CpulWrite | ResourceAccessFlag_GpuRead, .Size = sizeof(ScanlineBuffer)

}s hs

//VignettingDataBuffer Buffer
VignettingDataBuffer.ForEach([&](BufferRef& ref) {ref = ResourceFactory::CreateBuffer({
.AccessFlags = ResourceAccessFlag CpuWrite | ResourceAccessFlag_GpuRead, .Size = sizeof(VignettingBuffer)

s s

//PosterizeDataBuffer Buffer
PosterizeDataBuffer.ForEach([&] (BufferRef& ref) {ref =
ResourceFactory::CreateBuffer({.AccessFlags = ResourceAccessFlag _CpulWrite | ResourceAccessFlag_GpuRead,

.Size = sizeof(PosterizeBuffer)}); });

BloomDataBuffer.ForEach([&](BufferRef& ref) {ref = ResourceFactory::CreateBuffer({ .AccessFlags =
ResourceAccessFlag CpuWrite | ResourceAccessFlag GpuRead, .Size = sizeof(BloomBuffer) }); });
Bloom2DataBuffer.ForEach([&](BufferRef& ref) {ref = ResourceFactory::CreateBuffer({ .AccessFlags

= ResourceAccessFlag CpuWrite | ResourceAccessFlag GpuRead, .Size = sizeof(Bloom2Buffer) }); });

97

BlurGauDataBuffer.ForEach([&] (BufferRef& ref) {ref = ResourceFactory::CreateBuffer({ .AccessFlags
= ResourceAccessFlag_CpuWrite | ResourceAccessFlag_GpuRead, .Size = sizeof(BlurGauBuffer) }); });

ChromaTrueDataBuffer.ForEach([&] (BufferRef& ref) {ref = ResourceFactory::CreateBuffer({
.AccessFlags = ResourceAccessFlag CpulWrite | ResourceAccessFlag _GpuRead, .Size = sizeof(ChromaTrueBuffer)
}s b

ChromaStylizedDataBuffer.ForEach([&] (BufferRef& ref) {ref = ResourceFactory::CreateBuffer({
.AccessFlags = ResourceAccessFlag_CpuWrite | ResourceAccessFlag_GpuRead, .Size =
sizeof(ChromaStylizedBuffer) }); });

ColourGradDataBuffer.ForEach([&](BufferRef& ref) {ref = ResourceFactory::CreateBuffer({
.AccessFlags = ResourceAccessFlag_CpuWrite | ResourceAccessFlag_GpuRead, .Size = sizeof(ColourGradBuffer)
IDHE K

EmbossDataBuffer.ForEach([&] (BufferRef& ref) {ref = ResourceFactory::CreateBuffer({ .AccessFlags

= ResourceAccessFlag_CpuWrite | ResourceAccessFlag_GpuRead, .Size = sizeof(EmbossBuffer) 1}); });

GlassDataBuffer.Forkach([&](BufferRef& ref) {ref = ResourceFactory::CreateBuffer({ .AccessFlags
ResourceAccessFlag CpulWrite | ResourceAccessFlag GpuRead, .Size = sizeof(GlassBuffer) }); });
pixelDataBuffer.ForEach([&](BufferRef& ref) {ref = ResourceFactory::CreateBuffer({ .AccessFlags =

ResourceAccessFlag CpuWrite | ResourceAccessFlag GpuRead, .Size = sizeof(PixelBuffer) }); });

InitBuffers(BufferDesc bufferdesc) — Buffer Initialization Function

Purpose

This function allocates and initializes all CPU-writeable / GPU-readable buffers required by the post-
processing system. Each buffer corresponds to a specific effect like scanlines, bloom, chromatic
aberration, emboss, etc.

These buffers will later be updated with their respective data structs (like ScanlineBuffer, BloomBuffer,

etc.) before being uploaded to the GPU.

Parameters

BufferDesc bufferdesc

A reusable buffer description object passed in from outside.

The Init method is used to set:

Size: e.g. pennyBufferSize (64 KB default)

AccessFlags: CPU write access and GPU read access, suitable for constant buffers.

Function Body Walkthrough

98

// ScreenDataBuffer
bufferdesc.Init(pennyBufferSize, ResourceAccessFlag _CpulWrite | ResourceAccessFlag GpuRead);
ScreenDataBuffer.ForEach([&](BufferRef& ref) {

ref = ResourceFactory::CreateBuffer(bufferdesc);

3

Buffer: ScreenDataBuffer
Usage: Holds general screen-space rendering info like screen resolution.

Access: CPU-writable for updates each frame, GPU-readable in shaders.

Per-Effect Buffers

Each of the following follows this template:
Buffer.ForkEach([&](BufferRef& ref) {
ref = ResourceFactory: :CreateBuffer({
.AccessFlags = ResourceAccessFlag_CpulWrite | ResourceAccessFlag GpuRead,
.Size = sizeof(CorrespondingBufferStruct)
};
3

List of Buffers and Their Purpose:

Buffer, Struct, Purpose

ScanlineDataBuffer, ScanlineBuffer, CRT scanline simulation

VignettingDataBuffer, VignettingBuffer, Darkens screen edges to focus viewer's attention
PosterizeDataBuffer, PosterizeBuffer, Color quantization for stylized/retro effects
BloomDataBuffer, BloomBuffer, Radial light bleeding (intense light bloom)
Bloom2DataBuffer, Bloom2Buffer, Simpler threshold-based bloom effect

BlurGauDataBuffer, BlurGauBuffer, Configurable Gaussian blur filter
ChromaTrueDataBuffer, ChromaTrueBuffer, Basic chromatic aberration (RGB channel offset)
ChromaStylizedDataBuffer, ChromaStylizedBuffer, Advanced multi-channel chromatic distortions
ColourGradDataBuffer, ColourGradBuffer, Gradient overlays between two colors
EmbossDataBuffer, EmbossBuffer, Screen-space bump/edge highlighting for stylized visuals
GlassDataBuffer, GlassBuffer, Simulates refraction through glass panels or water

pixelDataBuffer, PixelBuffer, Low-resolution pixelation filter

Implementation Notes

MultiResource Pattern: Each buffer is wrapped in a MultiResource object, enabling use in multi-frame
rendering systems (e.g., triple buffering or per-frame resource sets).

Access Flags: All buffers are marked with:

CpulWrite: For CPU-side updates each frame.

GpuRead: Allows shaders to access the data in rendering or post-processing passes.

Size Calculation: For most buffers, sizeof(Struct) ensures only the required space is reserved.

99

void InitData(uint32_t InstanceDataBufferSize) {

int offset = @; //nothing to offset by /-change cmment layter

//ScreenDATA

screen_desc.InitAsStructuredBuffer<ScreenBuffer>(offset, InstanceDataBufferSize / sizeof(ScreenBuffer));

//ScanlineDATA
scanline_desc.InitAsStructuredBuffer<ScanlineBuffer>(offset, InstanceDataBufferSize /

sizeof(ScanlineBuffer));

//vignettingDATA
vignetting_desc.InitAsStructuredBuffer<VignettingBuffer>(offset, InstanceDataBufferSize /
sizeof(VignettingBuffer));

//posterizeDATA
posterize_desc.InitAsStructuredBuffer<PosterizeBuffer>(offset, InstanceDataBufferSize /

sizeof(PosterizeBuffer));

//bloomDATA
bloom_desc.InitAsStructuredBuffer<BloomBuffer>(offset, InstanceDataBufferSize / sizeof(BloomBuffer));

//bloom2DATA
bloom2_desc.InitAsStructuredBuffer<Bloom2Buffer>(offset, InstanceDataBufferSize / sizeof(Bloom2Buffer));

//blurGauDATA
blurGau_desc.InitAsStructuredBuffer<BlurGauBuffer>(offset, InstanceDataBufferSize /
sizeof(BlurGauBuffer));

//ChromaTrueDATA
ChromaTrue_desc.InitAsStructuredBuffer<ChromaTrueBuffer>(offset, InstanceDataBufferSize /

sizeof(ChromaTrueBuffer));

//ChromaStylizedDATA
ChromaStylized_desc.InitAsStructuredBuffer<ChromaStylizedBuffer>(offset, InstanceDataBufferSize /
sizeof(ChromaStylizedBuffer));

//colourGradDATA
colourGrad_desc.InitAsStructuredBuffer<ColourGradBuffer>(offset, InstanceDataBufferSize /
sizeof(ColourGradBuffer));

//embossDATA

Emboss_desc.InitAsStructuredBuffer<EmbossBuffer>(offset, InstanceDataBufferSize / sizeof(EmbossBuffer));

//glassDATA
glass_desc.InitAsStructuredBuffer<GlassBuffer>(offset, InstanceDataBufferSize / sizeof(GlassBuffer));

//pixelDATA
pixel_desc.InitAsStructuredBuffer<PixelBuffer>(offset, InstanceDataBufferSize / sizeof(PixelBuffer));

100

InitData(uint32_t InstanceDataBufferSize) — Descriptor Initialization Function

Purpose

This function initializes GPU buffer view descriptors (of type BufferViewDesc) for each post-processing
effect buffer. These descriptors define how shaders read structured data (e.g., uniform-like structures)
from memory.

Each view maps a specific type (e.g., ScanlineBuffer, BloomBuffer) to a region of a buffer, enabling

structured access on the GPU side.

Parameters

uint32_t InstanceDataBufferSize

Total memory size available for structured data (in bytes).
Used to compute the number of struct instances per buffer.

Ensures consistent allocation across different buffers.

Function Body Walkthrough

int offset = @; // nothing to offset by / - change comment later

Offset into the buffer, currently set to @ for all views (no subregioning yet).

Placeholder for future support for buffer suballocations (i.e., offset-based binding).

Descriptor Initialization Pattern

Each line follows the same structure:
descriptor.InitAsStructuredBuffer<StructType>(
offset,
InstanceDataBufferSize / sizeof(StructType)
)

StructType: The buffer structure to be read by the GPU (e.g., PosterizeBuffer).
offset: Offset into the buffer (currently always 0).

count: Number of struct elements that can fit in the allocated buffer.

Post-Processing Buffer View Descriptors

Descriptor, Struct Type, Purpose

101

screen_desc, ScreenBuffer, Holds screen dimensions and padding

scanline_desc, ScanlineBuffer, Defines scanline strength, direction, dimming
vignetting_desc, VignettingBuffer, Holds inner/outer radius and opacity for vignette effect
posterize desc, PosterizeBuffer, Describes color step sizes for posterization

bloom_desc, BloomBuffer, Describes bloom radii and amplification

bloom2_desc, Bloom2Buffer, Alternate bloom method using threshold/amp

blurGau_desc, BlurGauBuffer, Gaussian blur parameters and sampling weights
ChromaTrue_desc, ChromaTrueBuffer, Simple chromatic aberration offsets
ChromaStylized_desc, ChromaStylizedBuffer, Advanced chromatic offsets and color weighting
colourGrad_desc, ColourGradBuffer, Defines gradient transition between two colors
Emboss_desc, EmbossBuffer, Emboss width, height, and greyscale toggle

glass_desc, GlassBuffer, Glass pane size, used for distortion effects

pixel_desc, PixelBuffer, Pixel size data for pixelation effect

Why This Step Matters

These descriptors are what allow the GPU to see the buffer contents correctly.
Without this, data may be interpreted incorrectly or misaligned.
The structured format also gives type safety on the shader side, aligning with constant buffer layout

rules.

void BeginIncrementCounter() {
//m_ScanlineBuffer = ScanlineBuffer(LineThickness_, DimmedFactor_, transferPower_, vertical_);
ScreenDataBuffer.IncrementCounter();
ScanlineDataBuffer.IncrementCounter();
VignettingDataBuffer.IncrementCounter();

PosterizeDataBuffer.IncrementCounter();

BloomDataBuffer.IncrementCounter();
Bloom2DataBuffer.IncrementCounter();
BlurGauDataBuffer.IncrementCounter();

ChromaTrueDataBuffer.IncrementCounter();

ChromaStylizedDataBuffer.IncrementCounter();
ColourGradDataBuffer.IncrementCounter();
EmbossDataBuffer.IncrementCounter();

GlassDataBuffer.IncrementCounter();

pixelDataBuffer.IncrementCounter();

BeginIncrementCounter() — Advance Frame Resource Counters

102

Purpose

This function increments the internal resource counters for all post-processing MultiResource buffers,
enabling them to switch to the next buffer instance for the current frame. It’s designed to be called

once per frame (typically at the start of the frame update or rendering pass).

Context: MultiResource Buffering

MultiResource<T> is a wrapper that contains a buffer of GPU buffer references.

Internally, IncrementCounter() moves to the next available buffer slot.

Allowing the CPU to prepare data while the GPU is still reading previous frame resources.

Affected Buffers

The following buffers have their internal index advanced:

Buffer, Purpose / Contents

ScreenDataBuffer, Contains screen resolution and padding
ScanlineDataBuffer, Controls scanline rendering parameters
VignettingDataBuffer, Stores vignette falloff and opacity data
PosterizeDataBuffer, Contains parameters for posterization effect
BloomDataBuffer, Parameters for radial bloom/glow
Bloom2DataBuffer, Alternate bloom with amp/threshold settings
BlurGauDataBuffer, Gaussian blur weight and sampling configuration
ChromaTrueDataBuffer, Basic chromatic aberration settings
ChromaStylizedDataBuffer, Advanced chromatic offset/weight combinations
ColourGradDataBuffer, Gradient colour data (start/end)
EmbossDataBuffer, Emboss intensity, greyscale toggle, dimensions
GlassDataBuffer, Simulates panel-like refraction or distortion

pixelDataBuffer, Pixelation strength and pixel block size

Implementation Notes

Safe Resource Management: Ensures each frame’s data write doesn’t overwrite data in use by the GPU.
Temporal Effects: If any of these buffers support motion-aware or frame-history-based effects, this
system enables it.

Expandability: Adding new buffers to this system simply requires calling IncrementCounter() on the new

MultiResource.

void EndCopyToBuffer() {

int offset = 0;

103

//GraphicsContext: :CopyDataToBuffer(PosterizeDataBuffer.Get().get(), offset, sizeof(Frame),
&m_Frame);
//GraphicsContext: :CopyDataToBuffer(PosterizeDataBuffer.Get().get(), offset,

sizeof(PosterizeBuffer), &m_PosterizeBuffer);

//switch (EFFECT_PERMUTATIONS)
switch (CURRENT_STATE_)
//switch (ShaderToggles)
{
case PIXELATE_:
GraphicsContext: :CopyDataToBuffer(pixelDataBuffer.Get().get(), offset,
sizeof(PixelBuffer), &m_PixelBuffer);
break;
case POSTERIZE_:
GraphicsContext: :CopyDataToBuffer(PosterizeDataBuffer.Get().get(), offset,
sizeof(PosterizeBuffer), &m_PosterizeBuffer);
break;
case SCANLINE_:
GraphicsContext: :CopyDataToBuffer(ScanlineDataBuffer.Get().get(), offset,
sizeof(ScanlineBuffer), &m_ScanlineBuffer);
break;
case VIGNETTE_:
GraphicsContext: :CopyDataToBuffer(VignettingDataBuffer.Get().get(), offset,
sizeof(VignettingBuffer), &m_VignettingBuffer);
break;
case BLOOM_:
//RSPD.SetPixelShader(L"bloom_ps");
GraphicsContext: :CopyDataToBuffer (Bloom2DataBuffer.Get().get(), offset,
sizeof(Bloom2Buffer), &m_Bloom2Buffer);
break;
case CHROMABER_TRUE_:
GraphicsContext: :CopyDataToBuffer (ChromaTrueDataBuffer.Get().get(), offset,
sizeof(ChromaTrueBuffer), &m_ChromaTrueBuffer);
break;
case CHROMABER_STYLE_:
GraphicsContext: :CopyDataToBuffer(ChromaStylizedDataBuffer.Get().get(), offset,
sizeof(ChromaStylizedBuffer), &m_ChromaStylizedBuffer);
break;
case COLOURGRAD_:
GraphicsContext: :CopyDataToBuffer(ColourGradDataBuffer.Get().get(), offset,
sizeof(ColourGradBuffer), &m_ColourGradBuffer);
break;
case GLASS_:
GraphicsContext: :CopyDataToBuffer(GlassDataBuffer.Get().get(), offset,
sizeof(GlassBuffer), &m_GlassBuffer);

break;

104

case EMBOS_:
GraphicsContext: :CopyDataToBuffer (EmbossDataBuffer.Get().get(), offset,
sizeof(EmbossBuffer), &m_EmbossBuffer);
break;
case BLUR_GAU_:
GraphicsContext: :CopyDataToBuffer(BlurGauDataBuffer.Get().get(), offset,
sizeof(BlurGauBuffer), &m_BlurGauBuffer);

break;

default:
GraphicsContext: :CopyDataToBuffer(ScreenDataBuffer.Get().get(), offset,

sizeof(ScreenBuffer), &m_ScreenBuffer);

break;

EndCopyToBuffer() — Upload Active Post-Processing Buffer to GPU

Purpose

This function finalizes the frame setup by copying CPU-side post-processing effect data (e.g., scanline

strength, vignette radius, etc.) into the currently active GPU buffer associated with the enabled effect.

It is usually called at the end of frame preparation, just before rendering.

How It Works

Offset is set to zero: All data is copied to the beginning of each buffer.

int offset = 0;

The function then selects the active post-processing effect via the CURRENT_STATE_ switch:
switch (CURRENT_STATE_)

This is based on a shader state enum (ShaderToggles) such as PIXELATE_, BLOOM_, etc.
For the active effect, the corresponding CPU-side buffer (e.g., m_PixelBuffer, m_VignettingBuffer) is
copied to its associated MultiResource GPU buffer via:

GraphicsContext::CopyDataToBuffer(buffer, offset, size, &source);

If none of the predefined post-processing states match, it defaults to uploading the ScreenBuffer.

supported Shader States and Corresponding Buffers
Shader Toggle, GPU Buffer, CPU Struct

PIXELATE_, pixelDataBuffer, m_PixelBuffer
POSTERIZE_, PosterizeDataBuffer, m_PosterizeBuffer

105

SCANLINE_, ScanlineDataBuffer, m_ScanlineBuffer

VIGNETTE_, VignettingDataBuffer, m_VignettingBuffer

BLOOM_, Bloom2DataBuffer, m_Bloom2Buffer

CHROMABER_TRUE_, ChromaTrueDataBuffer, m_ChromaTrueBuffer
CHROMABER_STYLE_, ChromaStylizedDataBuffer, m_ChromaStylizedBuffer
COLOURGRAD_, ColourGradDataBuffer, m_ColourGradBuffer

GLASS_, GlassDataBuffer, m_GlassBuffer

EMBOS_, EmbossDataBuffer, m_EmbossBuffer

BLUR_GAU_, BlurGauDataBuffer, m_BlurGauBuffer

(default), ScreenDataBuffer, m_ScreenBuffer

void DrawVBIB_SetInlineResourceViewGraphics() {

//m_ScanlineBuffer = ScanlineBuffer(LineThickness_, DimmedFactor_, transferPower_, vertical_);

//RenderCommand: : SetInlineResourceViewGraphics(4, PosterizeDataBuffer.Get().get(),

posterize_desc, ViewAccessType ConstantBuffer);

////switch (EFFECT_PERMUTATIONS)
switch (CURRENT_STATE_)
{
case PIXELATE_:
RenderCommand: :SetInlineResourceViewGraphics(4, pixelDataBuffer.Get().get(), pixel_desc,
ViewAccessType_ConstantBuffer);
break;
case POSTERIZE_:
RenderCommand: :SetInlineResourceViewGraphics(4, PosterizeDataBuffer.Get().get(),
posterize_desc, ViewAccessType ConstantBuffer);
break;
case SCANLINE_:
RenderCommand: :SetInlineResourceViewGraphics(4, ScanlineDataBuffer.Get().get(),
scanline_desc, ViewAccessType_ConstantBuffer);
break;
case VIGNETTE_:
RenderCommand: :SetInlineResourceViewGraphics (4, VignettingDataBuffer.Get().get(),
vignetting_desc, ViewAccessType_ConstantBuffer);
break;
case BLOOM_:
//RenderCommand: :SetInlineResourceViewGraphics (4, BloomDataBuffer.Get().get(),
bloom_desc, ViewAccessType_ConstantBuffer);
RenderCommand: : SetInlineResourceViewGraphics(4, Bloom2DataBuffer.Get().get(),
bloom2_desc, ViewAccessType ConstantBuffer);
break;
case CHROMABER_TRUE_:
RenderCommand: :SetInlineResourceViewGraphics (4, ChromaTrueDataBuffer.Get().get(),
ChromaTrue_desc, ViewAccessType_ConstantBuffer);
break;
case CHROMABER_STYLE_:

106

RenderCommand: :SetInlineResourceViewGraphics(4, ChromaStylizedDataBuffer.Get().get(),
ChromaStylized_desc, ViewAccessType_ConstantBuffer);
break;
case COLOURGRAD_:
RenderCommand: : SetInlineResourceViewGraphics (4, ColourGradDataBuffer.Get().get(),
colourGrad_desc, ViewAccessType_ConstantBuffer);
break;
case GLASS_:
RenderCommand: :SetInlineResourceViewGraphics (4, GlassDataBuffer.Get().get(), glass_desc,
ViewAccessType_ConstantBuffer);
break;
case EMBOS_:
RenderCommand: :SetInlineResourceViewGraphics(4, EmbossDataBuffer.Get().get(),
Emboss_desc, ViewAccessType_ConstantBuffer);
break;
case BLUR_GAU_:
RenderCommand: :SetInlineResourceViewGraphics (4, BlurGauDataBuffer.Get().get(),
blurGau_desc, ViewAccessType_ConstantBuffer);

break;

default:
RenderCommand: :SetInlineResourceViewGraphics (4, ScreenDataBuffer.Get().get(),

screen_desc, ViewAccessType ConstantBuffer);

break;

DrawVBIB_SetInlineResourceViewGraphics() — Bind Per-Effect GPU Buffer as Inline Constant Buffer

Purpose

This function selects and binds the appropriate GPU-side constant buffer for the currently enabled post-
processing effect, using a shader slot (register) during the graphics pipeline draw call.

It acts as a resource view dispatcher, driven by the current shader state (CURRENT_STATE_).

Binding Mechanism

Each effect has a buffer and a buffer view (BufferViewDesc) prepared during initialization. This function
uses:
RenderCommand: : SetInlineResourceViewGraphics(

slotIndex, // e.g. 4

bufferRef, // GPU buffer (e.g. ScanlineDataBuffer)

107

bufferViewDesc, // Predefined view describing buffer layout

ViewAccessType // ViewAccessType_ConstantBuffer
)s

This binds a GPU buffer as a constant buffer at graphics shader register slot 4.

Supported Effects and Bindings

Shader Toggle, GPU Buffer, View Descriptor

PIXELATE_, pixelDataBuffer, pixel_desc

POSTERIZE_, PosterizeDataBuffer, posterize_desc

SCANLINE_, ScanlineDataBuffer, scanline_desc

VIGNETTE_, VignettingDataBuffer, vignetting desc

BLOOM_, Bloom2DataBuffer, bloom2_desc

CHROMABER_TRUE_, ChromaTrueDataBuffer, ChromaTrue_desc
CHROMABER_STYLE_, ChromaStylizedDataBuffer, ChromaStylized_desc
COLOURGRAD_, ColourGradDataBuffer, colourGrad_desc

GLASS_, GlassDataBuffer, glass_desc

EMBOS_, EmbossDataBuffer, Emboss_desc

BLUR_GAU_, BlurGauDataBuffer, blurGau_desc

(default fallback), ScreenDataBuffer, screen_desc

Each case ensures that the appropriate constant buffer view is bound, matching the currently active

shader.

Uses slot 4 uniformly for all effects — make sure shaders expect the constant buffer at this slot.
Falls back to ScreenDataBuffer if no specific effect is active.

Commented out Blooml this was accidental - the shader works just ran out of time to put it in

Penny Values

Skateboard: :Shader Input LayoutRef Rootsi El

CITCCT_PORMUTATIONS> Fipaline

108

pennybuf fessiie

Skateboard: :Mul LIREsour ce<Skat sboard: s BUfferfef> ScressDatabiuf fer;
Multl - iBufferfel> ScealineOatabuffer;
Skateboard: tMultiResourcoc Dutforied> Vigmettin et e

Skateboard: shu it iResourcecSkat ebodrd: sRutferiet > PosterizeDataliufter

kateboor Multifesource<Skated uttc
board : (Ml tiResourcecSkat eboard: :Rutty
Teboary 5 o Bufferiet> wriGaDat aButier;

board: : s skateboard:iBufferfie!> ChromaTrucDatabudfe

Skat #boar) s sBufferiet > ChromaStyl L 2edDat a8
skateboard: i ource<skateboard ufferfef> ColowrGradDatabuffe
Skateboar 1 reourcocskateboard: :aufforiof> CmbossDatalutfor;

Skateboars) VourcecSkat sboard: cBufferded> Glasshat akuffer;

Skateboard ! tMultiResourcecSkateboard: :Bufferfied> pixelDataBuffer;

Buf ferViewDesc n_desc;

uf ferviewDesc
ul ferviewDesc
BufferviewDesc

Bufferyicw
Buffervicw
Buffervicw

scanline desc;
vignetting d

posterize_de

bloom d
bloom2_desc;
blurGau d

Bufferyicw

Bufferyiew
Bufferyicw

BufferviewDe

reenbuffer m Screeniiuffer Screoenduffor();
Scanlinesuf fer m ScanlineBuffer - ScanlineBuffer
b I Fer Vignettin

- Posterizefuff

onBul fer 8loomdulfer();
Dloomzbuf fer n_Dloom20ufer - Dloom2nufl fer(
0lurGaubulfer m_0lurGaudul fer - BlurGautuflfer();

ChromaTruedul Ter m_ChromaTruebulfer = ChromaTrueduf ler

Chromsastyl
ourGradouf fer{);
Puf s0uffer £ ffer():

GlassBuffer m_Glassguffer Glasspuifer();

PixelBuffer m_PixelButfer PixelButter

ShaderToggles CURRENT_STATE_ = DEFAULT_STATE

109

BufferViewDesc sbvdesc;
BufferViewDesc lightsbwd

BufferViewDesc chvdesc;

Frame m Frame{ .AmbientLight

Fram:Data m_CameraDataf):

std: :vector<Light> m_Lights;

InstanceData m DefaullInstanceData Instancebal

m_Pipeline dirty;

m_Visual iseNormals = fal

> OutputTexture;
¢RenderTarpetviewitef> OutputRTv;

fRef> OutputSk
QutputTextures

e<RenderTargetviewitef > DutputRTvs 8;

xturcSRVRef> OutputSRYS_8:

extureSRVRef> OutputsRvs_[2]:

110

InstanceData current instancedata:

RasterizationPipelineDesc Raster{};

t previ creensize =

aberrationFactor Xy
link X¥ = true;

chromaticweightsi[a]

chromaticWeights2[4]

float startColor CG[3] = { 1,1,1};

float endColor CG[3] = { 1.2, ©.61, ©

float4 chromaticOffsetl;
floatd chromaticOffset?;
floata chromaticOffset Xy;
bool offsetlinked true;

bool X¥linked = true;

panelinked true;

ol pixelinked = true;

weight all;
multi all;

link weight;
link Multiplier;

floatd SpecularC = floata(1, 1, 1, 1);
floata DiffuseC = floata(i, 1, 1, 1);
SpecularWeight = 1;

specularPower

111

The Renderer

//renderer + pipeline stuff

void PennyRender::Init() {

SKTBD_APP_INFO("Renderer test 2 Init")

//Layout
ShaderInputLayoutDesc Layout{};

//instance index //©- slot

Layout.AddRootConstant(1, 0);

//frame data // 1- slot
Layout.AddConstantBufferView(1);

//instance data // 2- slot
Layout.AddShaderResourceView(0);

//light data // 3- slot
Layout.AddShaderResourceView(1);

//all post-processing buffers data // 4 - slot
Layout.AddConstantBufferView(2);

Layout .AddStaticSampler(StaticSamplerDesc, 9);

Layout.DescriptorsDirctlyAddresssed = true;
Layout.SamplersDirectlyAddressed = true;

Layout.CanUseInputAssembler = true;

Init_RasterPipeline(Layout);//

renderToScreen_init();//// initilising render to target

be for multi- render passes

renderToScreen_init_pass(OutputTextures_0, OutputRTVs_@, OutputSRVs_@);// - not in use -- suppost to

PennyRender::Init() — Pipeline and Renderer Initialization

112

Purpose

This function initializes the shader input layout, post-processing pipeline, and render targets for the rendering system used by the
PennyRender renderer.
It sets up all required resource bindings, including constant buffers, samplers, and resource views, and then calls initialization routines

for the graphics raster pipeline and render-to-screen pipeline.

Function Breakdown

Logging
SKTBD_APP_INFO("Renderer test 2 Init")

Logs the initialization event for debugging or performance tracking.

Shader Input Layout Setup

ShaderlnputLayoutDesc Layout{};

A layout descriptor is created to define how shaders will receive data (CBVs, SRVs, root constants, etc.).

Resource Slot Bindings:

Shader Slot, Type, Resource Use

0, RootConstant, Instance index

1, ConstantBufferView, Per-frame data (e.g., camera)

2, ShaderResourceView, Instance data buffer

3, ShaderResourceView, Light data buffer

4, ConstantBufferView, Post-processing data buffer

0 (Sampler), StaticSampler, Texture sampling

Layout.AddRootConstant(1, 0);

Layout.AddConstantBufferView(1); // Frame data (e.g., camera)
Layout.AddShaderResourceView(0); // Instance data (e.g., transform matrices)
Layout.AddShaderResourceView(1); // Light data
Layout.AddConstantBufferView(2); // Post-processing buffer (e.g., bloom, vignette)

Layout.AddStaticSampler(StaticSamplerDesc, 0);

Shader Binding Model Configuration

Layout.DescriptorsDirctlyAddresssed = true;
Layout.SamplersDirectlyAddressed = true;

Layout.CanUselnputAssembler = true;

113

These flags determine how shaders access their resources:
Direct addressing of descriptors (not through descriptor tables).

Input assembler is enabled, allowing use of vertex/index buffers.

Pipeline Initialization

Init_RasterPipeline(Layout);

Initializes the rasterization pipeline with the defined shader layout. This configures the graphics pipeline (shaders, buffers, states) to

prepare for rendering.

Render Target Initialization

renderToScreen_init(); // Initializes base render-to-texture resources

renderToScreen_init_pass(OutputTextures_0, OutputRTVs_0, OutputSRVs_0);

Sets up render targets:

OutputTextures_0: The textures to render into.

OutputRTVs_0: Render Target Views.

OutputSRVs_0: Shader Resource Views for sampling the output in post-processing.

Note: The second call is currently marked as "not in use" — originally intended for multi-pass post-processing setups.

Conceptual Summary

This function configures the graphics pipeline to accept structured and consistent input from CPU-side buffers and sets up output
targets for screen rendering. It's a crucial part of the initialization flow that ensures shaders receive the right data in the right slots and

that the rendering output can be displayed or post-processed.

Key Features Enabled

Dynamic instance rendering (via root constants + instance SRVs).
Per-frame camera and lighting data.

Slot for post-processing constant buffers (e.g., bloom, vignette).
Support for static samplers.

Input assembler support (for vertex/indexed geometry).

Configurable render targets.

void PennyRender::Init_RasterPipeline(ShaderInputLayoutDesc Layout) {

114

RootSig = ResourceFactory::CreateShaderInputLayout(Layout);

//RasterizationPipelineDesc Raster{};

//Raster{};

Raster

.Rasterizer =

RasterizerConfig: :Default();

Raster.Blend.AlphaToCoverage = false;
Raster.Blend.IndependentBlendEnable = false;
Raster.Blend.RTBlendConfigs[@].BlendEnable = false;
Raster.Blend.RTBlendConfigs[@].RenderTargetWriteMask = OxF;
Raster.DepthStencil.DepthEnable = false;
Raster.DepthStencil.BackFace.StencilDepthFailOp = SKTBD_StencilOp_KEEP;
Raster.DepthStencil.BackFace.StencilFailOp = SKTBD_StencilOp_KEEP;
Raster.DepthStencil.BackFace.StencilFunc = SKTBD_CompareOp_ALWAYS;
Raster.DepthStencil.BackFace.StencilPassOp = SKTBD_StencilOp_KEEP;
Raster.DepthStencil.DepthFunc = SKTBD_CompareOp_LESS;

Raster.DepthStencil.DepthWriteAll = true;

Raster.DepthStencil.FrontFace = Raster.DepthStencil.BackFace;

Raster.DepthStencil.StencilEnable = false;

Raster.DepthstencilTargetFormat = DataFormat_DEFAULT_DEPTHSTENCIL;

Raster.InputPrimitiveType = PrimitiveTopologyType_Triangle;

Raster.RenderTargetCount = 1;

Raster.RenderTargetDataFormats[@] = DataFormat_DEFAULT_BACKBUFFER;

Raster.InputVertexLayout = Vertex::VertexLayout();
Raster.SampleCount = 1;

Raster.SampleQuality = ©;

Raster.SampleMask = 1;

//initilising all shaders
Raster.SetVertexShader(L"CMP203_VertexShader");
Raster.SetPixelShader(L"CMP203_PixelShader_Unlit");
//Raster.SetPixelShader(L"test_ps");

//piepline permutations

Init_ShaderPermutation(Raster);

//NormalPipeline

Raster.DepthStencil.DepthEnable = true;
Raster.SetGeometryShader(L"CMP203_NormalGS_GS");
Raster.SetVertexShader(L"CMP203_NormalGS_VS");
Raster.SetPixelShader(L"CMP203_NormalGS_PS");

//creating PipelineDesc -

PipelineDesc PiplDesc;

115

0));

PiplDesc.GloballLayoutSignature = RootSig;
PiplDesc.Type = PipelineType_Graphics;
PiplDesc.TypeDesc = &Raster;

NormalVisualizer = ResourceFactory::CreatePipelineState(PiplDesc);

//create Buffers
//buffer desc
BufferDesc bufferdesc{};

//Triangle Buffer
bufferdesc.Init(DynamicBufferSize, ResourceAccessFlag CpulWrite | ResourceAccessFlag _GpuRead);

TriangleDataBuffer.ForEach([&] (BufferRef& ref) {ref = ResourceFactory::CreateBuffer(bufferdesc); });

//InstanceData Buffer
bufferdesc.Init(InstanceDataBufferSize, ResourceAccessFlag_CpuWrite | ResourceAccessFlag_GpuRead);

InstanceDataBuffer.ForEach([&](BufferRef& ref) {ref = ResourceFactory::CreateBuffer(bufferdesc); });

//LightDataBuffer
LightDataBuffer.ForEach([&] (BufferRef& ref) {ref = ResourceFactory::CreateBuffer(bufferdesc); });

//-- postprocessing buffers
InitBuffers(bufferdesc);

//Create Views
//Camera data

cbvdesc.InitAsConstantBuffer<Frame>(0);

//InstanceData

sbvdesc.InitAsStructuredBuffer<InstanceData>(@, InstanceDataBufferSize / sizeof(InstanceData));

//lightdata
lightsbvdesc.InitAsStructuredBuffer<Light>(0, InstanceDataBufferSize / sizeof(Light));

//-- postprocessing data desc

InitData(InstanceDataBufferSize);

//compute default camera

auto aspect = GraphicsContext::GetClientAspectRatio();

m_CameraData.ProjectionMatrix = glm::perspectiveLH(glm::radians(90.f), aspect, ©0.01f, 100.f);
m_CameraData.ViewMatrix = glm::lookAtLH(glm::vec3(0, @, -10), glm::vec3(9, 0, 0), glm::vec3(0, 1,

m_DefaultInstanceData.TextureIndex = m_DefaultTextureIDX;

116

//default Instance data being past to buffer

GraphicsContext: :CopyDataToBuffer(InstanceDataBuffer[0].get(), 0, sizeof(InstanceData),
&m_DefaultInstanceData);

GraphicsContext: :CopyDataToBuffer(InstanceDataBuffer[1l].get(), O, sizeof(InstanceData),
&m_DefaultInstanceData);

GraphicsContext: :CopyDataToBuffer(InstanceDataBuffer[2].get(), O, sizeof(InstanceData),
&m_DefaultInstanceData);

PennyRender: :Init_RasterPipeline(ShaderInputLayoutDesc Layout)

Purpose

This function configures and initializes the graphics pipeline, including the shader input layout,
rasterizer settings, render target formats, and key GPU buffers required for rendering and post-
processing effects. It also sets up a dedicated normal visualization pipeline and initializes associated

structured and constant buffers.

RootSig = ResourceFactory: :CreateShaderInputLayout(Layout);

Creates the shader root signature from the layout passed by PennyRender::Init() — defining how data is

bound to the shaders.

Raster.Rasterizer = RasterizerConfig::Default();

Raster.InputVertexLayout = Vertex::VertexLayout();

Sets up the rasterization pipeline with the following configurations:
No blending, no depth stencil, default backbuffer format.
Triangle-based topology.

Uses a default vertex layout for geometry rendering.

Render output is single-sample (no MSAA).

Shaders assigned:

117

Vertex Shader: CMP203_VertexShader
Pixel Shader: CMP203_PixelShader_Unlit
Raster.SetVertexShader(...);
Raster.SetPixelShader(...);

Init_ShaderPermutation(Raster);

Handles setup for various shader configurations (e.g., toggling between effects or shader versions).

Raster.DepthStencil.DepthEnable = true;
Raster.SetGeometryShader (L"CMP203_NormalGS_GS");
Raster.SetVertexShader (L"CMP203_NormalGS_VS");
Raster.SetPixelShader (L"CMP203_NormalGS_PS");

This alternate configuration enables depth testing and sets geometry shaders for visualizing vertex

normals in 3D.

PipelineDesc PiplDesc;

NormalVisualizer = ResourceFactory::CreatePipelineState(PiplDesc);

Creates the finalized pipeline state object (PSO) with the configured raster pipeline and root signature.

This is stored in NormalVisualizer.

Initializes GPU-side structured buffers for rendering geometry and lights:
TriangleDataBuffer

InstanceDataBuffer

LightDataBuffer

bufferdesc.Init(...);

TriangleDataBuffer.ForEach(...);

All buffers are marked as CpuWrite | GpuRead for frequent updates from the CPU side.

118

InitBuffers(bufferdesc);

Initializes all post-processing effect buffers (e.g., vignette, posterize, bloom), using the same access

pattern as above.

Sets up views for constant/structured buffers, describing how GPU shaders access each buffer:
cbvdesc.InitAsConstantBuffer<Frame>(0);

sbvdesc.InitAsStructuredBuffer<InstanceData>(...);
lightsbvdesc.InitAsStructuredBuffer<Light>(...);

InitData(...); // Additional post-process buffer view init

Each descriptor (CBV/SBV) defines:
The buffer type.
The offset and size (based on buffer capacity).

How it's accessed by the GPU.

m_CameraData.ProjectionMatrix = glm::perspectivelH(...);

m_CameraData.ViewMatrix = glm::1lookAtLH(...);
Creates a default view-projection matrix:

Perspective projection with 90° FOV.

Camera located at (0, @, -10) looking at origin.

m_DefaultInstanceData.TextureIndex = m_DefaultTextureIDX;

Initializes a fallback InstanceData structure, assigning the default texture index for all instances.

GraphicsContext: :CopyDataToBuffer(...);

Copies default instance data into three GPU buffers — triple-buffered for use across frames.

Conceptual Summary

119

Init_RasterPipeline fully configures the rendering pipeline:

Establishes GPU-side shader data bindings.

Builds pipelines for both base rendering and normal visualization.

Allocates and binds buffers for all geometry, lighting, and post-processing data.

Sets up initial camera and rendering state.

It is one of the core setup functions responsible for getting the renderer ready to draw frames

efficiently and flexibly.

void PennyRender::Init_ShaderPermutation(RasterizationPipelineDesc Raster) {

//piepline permutations

for (uintl6_t p = ©; p < EFFECT_PERMUTATIONS; p++)
{
auto RSPD = Raster;
RSPD.DepthStencil.DepthEnable = true;

////pipeling permutaions

//switch (CURRENT_STATE_Pass[p])
switch ((ShaderToggles)p)

case PIXELATE_:
RSPD.SetPixelShader(L"pixelate_ps");
break;

case POSTERIZE_:
RSPD.SetPixelShader(L"posterize_ps");
break;

case SCANLINE_:
RSPD.SetPixelShader(L"scanline_ps");
break;

case VIGNETTE_:
RSPD.SetPixelShader(L"vignetting_ps");
break;

case BLOOM :
//RSPD.SetPixelShader(L"bloom_ps");
RSPD.SetPixelShader(L"bloom2_ps");// needs to be passed through the blur shader
break;

case CHROMABER_TRUE_:
RSPD.SetPixelShader(L"ChromaAber_True_ps");
break;

case CHROMABER_STYLE_:
RSPD.SetPixelShader(L"ChromaAber_Stylized_ps");
break;

case COLOURGRAD_:
RSPD.SetPixelShader(L"colourGrading_ps");
break;

case GLASS_:
RSPD.SetPixelShader(L"glass_ps");
break;

case EMBOS_:
RSPD.SetPixelShader(L"embossed_ps");
break;

case BLUR_GAU_:
RSPD.SetPixelShader(L"blur_gaussian_ps");
break;

case POSTPROSSESSING_:
RSPD.SetPixelShader(L"Defualt_ps");
break;

default:
RSPD.SetPixelShader(L"Defualt_ps");
//RSPD.SetPixelShader(L"CMP203_NormalGS_PS");
break;

120

PipelineDesc PiplDesc;

PiplDesc.GloballLayoutSignature = RootSig;

PiplDesc.Type = PipelineType_Graphics;

PiplDesc.TypeDesc = &RSPD;

Pipelines[p] = ResourceFactory::CreatePipelineState(PiplDesc);
//Pipelines[@] = ResourceFactory::CreatePipelineState(PiplDesc);

PennyRender::Init_ShaderPermutation(RasterizationPipelineDesc Raster)

Purpose

Initializes and stores a set of graphics pipeline permutations, each using a different pixel shader corresponding to a specific post-
processing effect. This system allows fast switching between visual effects at runtime by pre-building the necessary pipeline state

objects (PSOs).

Function Overview

Loop Through Effect Permutations

for (uint16_t p = 0; p < EFFECT_PERMUTATIONS; p++)

Iterates over each defined effect in EFFECT_PERMUTATIONS — a constant that represents the number of supported post-processing

effects or visual shader modes.

Base Raster Configuration

auto RSPD = Raster;
RSPD.DepthStencil.DepthEnable = true;

Creates a copy of the input raster pipeline configuration. Then, enables depth testing for each effect permutation (useful for z-ordering

or 3D-aware effects).

Set Pixel Shader Based on Effect

A switch is used to assign the correct pixel shader for each permutation index p, interpreted as a ShaderToggles enum.
Example mappings:

Shader Toggle Enum, Assigned Pixel Shader

121

PIXELATE_, pixelate_ps

POSTERIZE_, posterize_ps

SCANLINE_, scanline_ps

BLOOM_, bloom2_ps

CHROMABER_TRUE_, ChromaAber_True_ps
CHROMABER_STYLE_, ChromaAber_Stylized_ps
COLOURGRAD_, colourGrading_ps
GLASS_, glass_ps

EMBOS_, embossed_ps

BLUR_GAU_, blur_gaussian_ps
POSTPROSSESSING_/other, Defualt_ps

This allows each visual effect to have its dedicated rendering pipeline with appropriate shading logic.

Create Pipeline State for Each Shader

PipelineDesc PiplDesc;
PiplDesc.GloballLayoutSignature = RootSig;
PiplDesc.Type = PipelineType_Graphics;
PiplDesc.TypeDesc = &RSPD;

Pipelines[p] = ResourceFactory::CreatePipelineState(PiplDesc);

For each shader permutation:
Constructs a PipelineDesc structure referencing the layout (RootSig) and configured raster data (RSPD).
Calls the GPU abstraction layer to create a pipeline state object (PSO).

Stores the resulting PSO in the Pipelines array indexed by effect type.

Output

The result is a populated Pipelines[] array with prebuilt PSOs, each optimized for a specific post-processing effect. This avoids runtime

compilation and enables rapid switching between visual modes during rendering.

Conceptual Summary

This function is a core part of the effect system, handling:

Initialization of shader permutations.

Binding of pixel shaders specific to visual styles.

Creation of PSO objects for all valid rendering paths.

This enables PennyRender to dynamically switch effects via CURRENT_STATE_ without incurring pipeline creation cost during frame

rendering.

122

void PennyRender::Begin()

{

//Move Onto Next frame In Buffer

TriangleDataBuffer.IncrementCounter();

InstanceDataBuffer.IncrementCounter();

LightDataBuffer.IncrementCounter();

BeginIncrementCounter();//

//reset the buffer Offset

m_Offset = ROUND_UP(sizeof(Frame), GraphicsConstants::CONSTANT_BUFFER_ALIGNMENT);

m_InstanceDataForks = 1;

RenderCommand: : SetInputLayoutGraphics(RootSig.get());
//RenderCommand: : SetPipelineState(Pipelines[@].get());

//RenderCommand: : SetPipelineState(Pipelines[m_PipelineSelection].get());
RenderCommand: :SetPipelineState(Pipelines[CURRENT_STATE_].get());

PennyRender: :Begin()

Purpose

The Begin() function prepares the renderer for the next frame by:
Incrementing counters to move to the next frame.
Setting up the necessary buffers and resources.

Configuring the graphics pipeline state for the current frame.

Incrementing Data Buffers

TriangleDataBuffer.IncrementCounter();
InstanceDataBuffer.IncrementCounter();
LightDataBuffer.IncrementCounter();

BeginIncrementCounter();

123

TriangleDataBuffer, InstanceDataBuffer, and LightDataBuffer are incremented to move to the next frame in
their respective buffers. This ensures the renderer works with the latest data during rendering.
BeginIncrementCounter() is called to handle additional internal counters (for other buffers related to

rendering).

Resetting the Buffer Offset
m_Offset = ROUND_UP(sizeof(Frame), GraphicsConstants::CONSTANT_BUFFER_ALIGNMENT);

The offset is reset to ensure that the frame data is correctly aligned to the GPU's constant buffer
alignment requirements. This ensures that when new data is copied into the buffer, it aligns with the

expected memory boundaries.

Setting the Instance Data Forks

m_InstanceDataForks = 1;

m_InstanceDataForks is set to 1. This manages how many copies (or "forks") of the instance data will be

used, typically one for each object in a scene.

Setting the Graphics Pipeline Input Layout

RenderCommand: : SetInputLayoutGraphics(RootSig.get());

Input layout is configured using the Root Signature (RootSig), which is a descriptor of the pipeline’s
input resources (constant buffers, resources, etc.).

This function ensures that the GPU knows the layout of incoming vertex data.

Setting the Graphics Pipeline State

RenderCommand: : SetPipelineState(Pipelines[CURRENT_STATE_].get());

The pipeline state for the current frame is set using the Pipelines[CURRENT_STATE_].
The CURRENT_STATE_ is an enum variable that selects the current rendering effect, enabling the

appropriate shader/pipeline configuration.

Output
The function does not return anything but prepares the renderer for the upcoming frame by:
Ensuring buffers are properly incremented and prepared.

Setting the input layout and pipeline state to match the current rendering configuration.

Conceptual Summary

124

The Begin() function is responsible for preparing the renderer for the next frame, ensuring that:
Data buffers are updated for the next frame.
The GPU has the necessary information on how to interpret vertex and constant data.

The correct pipeline state is set to handle the current rendering state, as defined by CURRENT_STATE_.

void PennyRender: :End()

{
m_Frame.Matrices = m_CameraData;
m_Frame.LightCount = m_Lights.size();

m_Frame.CameraMatrix = glm::inverse(m_CameraData.ViewMatrix);

//update the frame data buffer section
GraphicsContext: :CopyDataToBuffer(TriangleDataBuffer.Get().get(), 0, sizeof(Frame), &m_Frame);

//send lightdata to gpu
GraphicsContext: :CopyDataToBuffer(LightDataBuffer.Get().get(), 0, sizeof(Light) * m_Frame.LightCount,
m_Lights.data());

EndCopyToBuffer();

PennyRender: :End()

Purpose

The End() function finalizes the frame rendering process by:
Updating the frame data with the camera and lighting information.
Copying updated frame data and light data to the GPU.

Completing any necessary buffer copy operations for the current frame.

Updating Frame Data

m_Frame.Matrices = m_CameraData;
m_Frame.LightCount = m_Lights.size();

m_Frame.CameraMatrix = glm::inverse(m_CameraData.ViewMatrix);

Camera and Lighting Data:

125

m_Frame.Matrices is updated with the camera data (m_CameraData), ensuring the frame has the latest view
and projection matrix information.

m_Frame.LightCount is updated to reflect the number of lights in the scene (m_Lights.size()), allowing

the shader to know how many lights to process.

m_Frame.CameraMatrix stores the inverse view matrix (glm::inverse(m_CameraData.ViewMatrix)), which will

be used in shaders to transform world space coordinates into camera space.

Copying Updated Frame Data to GPU

GraphicsContext: :CopyDataToBuffer(TriangleDataBuffer.Get().get(), 0, sizeof(Frame), &m_Frame);

The updated frame data (m_Frame) is copied to the GPU using the TriangleDataBuffer. This will allow the
GPU to access the latest camera and lighting data during rendering.
The data is copied starting from offset ©, and the size of the data being copied is the size of the Frame

structure.

Sending Light Data to GPU

GraphicsContext::CopyDataToBuffer(LightDataBuffer.Get().get(), 0, sizeof(Light) * m_Frame.LightCount,
m_Lights.data());

Light data is copied to the GPU using the LightDataBuffer. The light data is passed to the shader, and
the number of lights (m_Frame.LightCount) determines how much light data will be copied.
The light data is represented as an array (m_Lights.data()), and the size of the data copied is

sizeof(Light) * m_Frame.LightCount.

Finalizing Buffer Copy Operations

EndCopyToBuffer();

EndCopyToBuffer() is called to perform any additional copying of buffer data necessary at the end of the
frame.

This function handles any post-processing or final buffer updates required for the GPU.

The function does not return anything but ensures that:
The frame data is updated and available for the next stage in the graphics pipeline.
The light data is sent to the GPU and will be used in shaders for lighting calculations.

The final buffer copy operations are completed to ensure the GPU has all necessary data.

Conceptual Summary
The End() function finalizes the rendering process by:

Updating the frame with the latest camera and light information.

126

Copying updated frame data and light data to GPU buffers.

Finalizing buffer copy operations to ensure the GPU is prepared for the next frame.

void PennyRender::renderToScreen_end(MultiResource<RenderTargetViewRef> OutputRTV, MultiResource<TextureSRVRef>
OutputSRV) {

/ll/next frame

++OutputSRV;

++OutputRTV;

}

PennyRender::renderToScreen_end()

Purpose

The renderToScreen_end() function is used to finalize the process of rendering to the screen by updating the render target and shader

resource view (SRV) for the next frame.

Function Overview

Incrementing the Render Target View (RTV)
++OutputRTV;

Purpose: This operation increments the Render Target View (RTV) to point to the next render targetin the sequence.

Effect: This essentially prepares the system to render the next frame to a new target, moving forward in the sequence of render targets.

Incrementing the Shader Resource View (SRV)

++OutputSRV;

Purpose: Similar to the RTV, this operation increments the Shader Resource View (SRV) to the next texture in the sequence.
Effect: It ensures that the next texture resource (for example, a texture containing the result of the current frame's rendering) is used in

subsequent shader operations, typically for post-processing or any other shader-based effects.

Conceptual Summary

The renderToScreen_end() function serves as a mechanism to increment the render target and shader resource view pointers,
effectively preparing them for the next frame. This allows the system to move from one frame's output to the next frame's input

seamlessly, ensuring continuous rendering.

void PennyRender::SetFrameData(FrameData newData)

{

127

m_CameraData = newData;

}

PennyRender::SetFrameData()

Purpose

The SetFrameData() function is used to update the camera data for the current frame. It takes a FrameData object as input and assigns

it to the m_CameraData member variable.

Function Overview

Updating the Camera Data

m_CameraData = newData;

Purpose: This line of code assigns the provided newData (of type FrameData) to the m_CameraData member variable.

Effect: The camera data for the current frame is updated. This includes information such as the view and projection matrices, which are

typically used for rendering the scene from the camera's perspective.

Conceptual Summary

The SetFrameData() function is a simple setter that allows external code to update the camera data for the current frame. This is
important for scenarios where the camera might change during the course of the program, and new camera data needs to be used for

rendering.

void PennyRender::DrawVertices(Vertex* vertexBuffer, size_t vertexcount, uint32_t* indexbuffer, size_t
indexcount, InstanceData* data, int CurrentRenderPass_in)
{

size_t VBSize = vertexcount * Vertex::VertexLayout().GetStride();

size_t IBSize = sizeof(int32_t) * indexcount;

GraphicsContext: :CopyDataToBuffer(TriangleDataBuffer.Get().get(), m_Offset, VBSize, vertexBuffer);
GraphicsContext: :CopyDataToBuffer(TriangleDataBuffer.Get().get(), m_Offset + VBSize, IBSize,

indexbuffer);

Skateboard: :VertexBufferView vbv{};
Skateboard: :IndexBufferView ibv{};

128

vbv.m_Offset = m_Offset;
vbv.m_ParentResource = TriangleDataBuffer.Get();
vbv.m_VertexCount = vertexcount;

vbv.m_VertexStride = Vertex::VertexLayout().GetStride();

ibv.m_Offset = m_Offset + VBSize;
ibv.m_Format = IndexFormat::bit32;
ibv.m_ParentResource = TriangleDataBuffer.Get();

ibv.m_IndexCount = indexcount;

m_Offset += VBSize + IBSize;

DrawVBIB(&vbv, &ibv, data, CurrentRenderPass_in);

PennyRender: :DrawVertices()

Purpose

The DrawVertices() function handles the process of copying vertex and index data to a buffer and then
initiating the drawing process. It takes a vertex buffer, index buffer, instance data, and the current

render pass as inputs. This function is primarily used to render geometry based on the provided data.

Calculating Buffer Sizes

size_t VBSize = vertexcount * Vertex::VertexLayout().GetStride();

size_t IBSize = sizeof(int32_t) * indexcount;

Purpose:

The size of the vertex buffer (VBSize) is calculated by multiplying the number of vertices (vertexcount)
by the stride of each vertex (which can be obtained via Vertex::VertexLayout().GetStride()).
The size of the index buffer (IBSize) is calculated by multiplying the number of indices (indexcount) by

the size of an index (assumed to be sizeof(int32_t)).

Copying Data to Triangle Data Buffer

GraphicsContext::CopyDataToBuffer(TriangleDataBuffer.Get().get(), m_Offset, VBSize, vertexBuffer);
GraphicsContext::CopyDataToBuffer(TriangleDataBuffer.Get().get(), m_Offset + VBSize, IBSize,

indexbuffer);

129

Purpose:
Copies the vertex data to the TriangleDataBuffer starting from the offset m_Offset.
Then, copies the index data to the buffer at the new offset, which is m_Offset + VBSize.

Effect: The vertex and index data are placed into a GPU buffer for rendering.

Setting Up Vertex and Index Buffer Views

Skateboard: :VertexBufferView vbv{};
Skateboard::IndexBufferView ibv{};

Purpose:
Initializes VertexBufferView (vbv) and IndexBufferView (ibv), which describe how to access the vertex and

index data in the buffer.

Configuring Vertex Buffer View

vbv.m_Offset = m_Offset;
vbv.m_ParentResource = TriangleDataBuffer.Get();
vbv.m_VertexCount = vertexcount;

vbv.m_VertexStride = Vertex::VertexLayout().GetStride();

Purpose:

The VertexBufferView (vbv) is configured with the following:
m_Offset: The offset from where the vertex data starts in the buffer.
m_ParentResource: The buffer resource that holds the vertex data.
m_VertexCount: The total number of vertices.

m_VertexStride: The stride (size) of each vertex.

Configuring Index Buffer View

ibv.m_Offset = m_Offset + VBSize;
ibv.m_Format = IndexFormat::bit32;
ibv.m_ParentResource = TriangleDataBuffer.Get();

ibv.m_IndexCount = indexcount;

Purpose:

The IndexBufferView (ibv) is configured with the following:

m_Offset: The offset from where the index data starts in the buffer (m_Offset + VBSize).
m_Format: The format of the indices (bit32 indicates 32-bit indices).

m_ParentResource: The buffer resource that holds the index data.

m_IndexCount: The total number of indices.

Updating the Offset

130

m_Offset += VBSize + IBSize;

Purpose: The offset (m_Offset) is updated by adding the sizes of the vertex and index buffers. This
ensures that the next time vertex or index data is copied, it will be placed in the correct location in
the buffer.

Calling Draw Function

DrawVBIB(&vbv, &ibv, data, CurrentRenderPass_in);

Purpose: The DrawVBIB() function is called to initiate the drawing process with the configured vertex and
index buffer views (vbv and ibv), the instance data (data), and the current render pass

(CurrentRenderPass_in).

Output

Effect: This function initiates the drawing process by sending the vertex and index data to the GPU,
using the TriangleDataBuffer. It sets up the buffers and calls the DrawVBIB() function to actually issue
the draw command.

No return value.

Conceptual Summary

The DrawVertices() function is responsible for copying vertex and index data to a buffer in the GPU,
configuring the necessary buffer views, updating the offset, and then triggering the drawing process.
This is a typical function used in rendering pipelines to handle geometry rendering for a frame, with

support for vertex and index data, as well as handling multiple render passes and instance data.

void PennyRender: :DrawVBIB(VertexBufferView* vb, IndexBufferView* ib, InstanceData* data, int

CurrentRenderPass_in)

{

if (m_Pipeline_dirty)

{
m_Pipeline_dirty = false;
//RenderCommand: :SetPipelineState(Pipelines[@].get());
//RenderCommand: :SetPipelineState(Pipelines[m_PipelineSelection].get());
RenderCommand: :SetPipelineState(Pipelines[CURRENT_STATE_].get());

}

if (data)

{

GraphicsContext: :CopyDataToBuffer(InstanceDataBuffer.Get().get(), sizeof(InstanceData) *
m_InstanceDataForks, sizeof(InstanceData), data);

RenderCommand: :SetInline32bitDataGraphics(0, &m_InstanceDataForks, 1);

131

++m_InstanceDataForks;

}
else
{
//default value
int d = 0;
RenderCommand: :SetInline32bitDataGraphics(0, &d, 1);
}

RenderCommand: :SetInlineResourceViewGraphics(1, TriangleDataBuffer.Get().get(), cbvdesc,
ViewAccessType_ConstantBuffer);

RenderCommand: :SetInlineResourceViewGraphics(2, InstanceDataBuffer.Get().get(), sbvdesc,
ViewAccessType_GpuRead);

RenderCommand: :SetInlineResourceViewGraphics(3, LightDataBuffer.Get().get(), lightsbvdesc,
ViewAccessType_GpuRead);

DrawVBIB_SetInlineResourceViewGraphics();//

RenderCommand: : SetIndexBuffer(ib);
RenderCommand: : SetVertexBuffer(vb, 1);

RenderCommand: : SetPrimitiveTopology(Topology);

RenderCommand: :DrawIndexed(®, ©, ib->m_IndexCount);

if (m_VisualiseNormals)//

{
RenderCommand: :SetPipelineState(NormalVisualizer.get());
RenderCommand: :DrawIndexed (@, 0, ib->m_IndexCount);
RenderCommand: :SetPipelineState(Pipelines[CURRENT_STATE_].get());
¥

PennyRender: :DrawVBIB()

Purpose

The DrawVBIB() function is responsible for managing the drawing process for a given set of vertex and
index buffers. It ensures that pipeline states, instance data, and resources are properly set before
issuing a draw call. This function handles both regular and instance-based rendering, allowing for

dynamic and efficient drawing commands to be issued to the GPU.

132

Function Overview

Pipeline State Check

if (m_Pipeline_dirty)
{
m_Pipeline_dirty = false;

RenderCommand: : SetPipelineState(Pipelines[CURRENT_STATE_].get());

The function first checks if the pipeline state is dirty (i.e., needs updating). If so, it sets the
appropriate pipeline state using the current state from Pipelines[CURRENT_STATE_]. This ensures that any

changes in the pipeline configuration are reflected before drawing.

Handling Instance Data

if (data)
{

GraphicsContext: :CopyDataToBuffer(InstanceDataBuffer.Get().get(), sizeof(InstanceData) *
m_InstanceDataForks, sizeof(InstanceData), data);

RenderCommand: :SetInline32bitDataGraphics(@, &m_InstanceDataForks, 1);

++m_InstanceDataForks;

}
else
{
int d = 0;
RenderCommand: :SetInline32bitDataGraphics(0, &d, 1);
}

If instance data (data) is provided, it copies the instance data to the InstanceDataBuffer at an offset
determined by m_InstanceDataForks. It also increments the m_InstanceDataForks counter to track how many
instance data blocks have been processed.

If no instance data is provided, it sets a default value (@) to indicate no specific instance data for

the current draw call.

Setting Inline Resource Views

RenderCommand: : SetInlineResourceViewGraphics(1, TriangleDataBuffer.Get().get(), cbvdesc,
ViewAccessType_ConstantBuffer);

RenderCommand: : SetInlineResourceViewGraphics(2, InstanceDataBuffer.Get().get(), sbvdesc,
ViewAccessType_GpuRead);

RenderCommand: : SetInlineResourceViewGraphics(3, LightDataBuffer.Get().get(), lightsbvdesc,
ViewAccessType_GpuRead);

These lines set up the resource views for different buffers:

133

TriangleDataBuffer: The vertex and index data.
InstanceDataBuffer: The instance-specific data.

LightDataBuffer: The light data used for shading or lighting effects.

The data is passed with different access types, such as ConstantBuffer and GpuRead, which define how the

GPU will access these resources.

Setting Additional Resource Views

DrawVBIB_SetInlineResourceViewGraphics();

This function call is used to handle additional resource views (related to post-processing stages of the

pipeline).

Setting Buffers and Primitive Topology
RenderCommand: : SetIndexBuffer(ib);
RenderCommand: : SetVertexBuffer(vb, 1);

RenderCommand: : SetPrimitiveTopology(Topology);

Sets the index buffer (ib), vertex buffer (vb), and the primitive topology (Topology). The topology

defines the way vertices are interpreted, such as TrianglelList, LineStrip, etc.

Draw Indexed Command

RenderCommand: :DrawIndexed (@, 0, ib->m_IndexCount);

This is the main draw command that issues a draw call using indexed geometry. It uses the index count

from the provided IndexBufferView (ib) to determine how many indices to process.

Visualizing Normals

if (m_VisualiseNormals)

{
RenderCommand: :SetPipelineState(NormalVisualizer.get());
RenderCommand: :DrawIndexed(@, ©, ib->m_IndexCount);
RenderCommand: : SetPipelineState(Pipelines[CURRENT_STATE_].get());
}

If normal visualization is enabled (m_VisualiseNormals), it switches the pipeline state to a "normal
visualizer" state and issues another draw call. This is often used in debugging to visualize how normals
are applied to the geometry.

After visualizing the normals, the pipeline state is reset to the current state to continue with the

regular rendering process.

134

Output

This function sets up the necessary resources, instance data, and pipeline states to render geometry
using vertex and index buffers. It also optionally handles normal visualization for debugging or
visualization purposes.

The function does not return any value but directly interacts with the GPU to manage rendering.

Conceptual Summary

The DrawVBIB() function is a critical part of the rendering pipeline, responsible for configuring
resources and issuing draw commands. It checks if the pipeline state is dirty and ensures that all
necessary resources are set up for rendering. It also provides flexibility for instance-based rendering

and optional debugging features, like normal visualization.

void PennyRender::renderScreen(Texture renderTexture) {

SetRenderTargets_(OutputTexture,OutputRTV);

//RenderCommand: :ClearRenderTargets (OutputRTVs_0.Get().get(), 1, float4(o, 0, 0, 0));

//rendering scene

Begin();//

uint32_t Indexdatal]

{
0,1,2

3

std::vector<pen::Vertex> movedvertices = vertices_screen;

pen::InstanceData testdata;

testdata.Texturelndex = 10;

for (auto& a : movedvertices) { a.Position += float3(2.5, 0, 0); }

DrawVertices(movedvertices.data(), 3, Indexdata, 3, &testdata);

pen::Vertex Quad[4] =

{
{float3(-1,1,0),float3(0,0,0),float2(0,0), float3(0,0, -1) }s
{float3(-1,-1,0),float3(0,0,0),float2(0,1), float3(0,0,-1) },
{float3(1,-1,0),float3(0,0,0),float2(1,1), float3(0,0, -1) 1,

135

{float3(1,1,0),float3(0,0,0),float2(1,0), float3(e,0,-1) }
s

uint32_t quadindices[6] =

{
0,1,2,2,3,0

3

testdata.TextureIndex = renderTexture->GetViewIndex();

matrix World = glm::translate(float3(-5, @, 0));

testdata.World = World * glm::translate(float3(5, @, -5)) * (90.f, 1.f, 1.f) * glm::scale(float3(9,
5, 1)); //find out proper window size later (maybe ask naman if he knows?)

testdata.ColourScale = float4(1, 1, 1, 0.9);

testdata.SpecularColor = Specular(C;

testdata.SpecularPower = SpecularPower;

testdata.SpecularWeight = SpecularWeight;

DrawVertices(Quad, 4, quadindices, 6, &testdata);

End();

//end of render

GraphicsContext::SetRenderTargetToBackBuffer();

PennyRender: :renderScreen()

The renderScreen() function is responsible for rendering the scene onto a texture and then drawing a quad
to the screen, using the specified Texture as the source for the quad. It sets up the necessary render
targets, handles the rendering of vertices and index data, and applies instance-specific transformation

and texture data before completing the rendering process.

Function Overview

136

Setting Render Targets

SetRenderTargets_(OutputTexture, OutputRTV);

This function call sets the render targets for the current rendering pass. OutputTexture is the texture

where the scene will be rendered, and OutputRTV is the render target view used for that texture.

Beginning the Render

Begin();

This function call starts the rendering process by preparing necessary buffers and setting up the

pipeline. It’s a prerequisite for rendering any geometry.

pen::Vertex Quad[4] = {
{float3(-1,1,0),float3(0,0,0),float2(0,0), float3(e,0,-1)},
{float3(-1,-1,0),float3(0,0,0),float2(0,1), float3(o,0,-1)},
{float3(1,-1,0),float3(0,0,0),float2(1,1), float3(e,0,-1)},
{float3(1,1,0),float3(0,0,0),float2(1,0), float3(@,0,-1)}

s

Defines the vertices of a quad, which will be rendered as a full-screen object. The quad has four

corners, with each vertex having a position (float3), a texture coordinate (float2), and a normal vector

(float3).

Defining Quad Indices

uint32_t quadindices[6] = { 0, 1, 2, 2, 3, 0 };

Defines the indices for the quad. The indices refer to the vertices in Quad[] and determine how the

vertices are connected to form two triangles (one for each half of the quad).

Setting Instance Data for Quad

testdata.TextureIndex = renderTexture->GetViewIndex();

matrix World = glm::translate(float3(-5, @, 0));

testdata.World = World * glm::translate(float3(5, @, -5)) * (90.f, 1.f, 1.f) * glm::scale(float3(9, 5,
1));

testdata.ColourScale = float4(1, 1, 1, 0.9);

testdata.SpecularColor = SpecularC;

testdata.SpecularPower = SpecularPower;

testdata.SpecularWeight = SpecularWeight;

Sets the instance data (testdata) for the quad:

137

TextureIndex: Uses the texture's view index (renderTexture->GetViewIndex()).
World: Applies a series of transformations, including translation, rotation, and scaling to the quad.
ColourScale, SpecularColor, SpecularPower, and SpecularWeight: Additional data for shading, lighting, and

material properties (such as color scaling and specular effects).

Drawing the Quad

DrawVertices(Quad, 4, quadindices, 6, &testdata);

This call renders the quad using the vertices (Quad), indices (quadindices), and the instance data

(testdata). The quad is drawn to the screen, using the texture specified in testdata.

Ending the Render
End();

This function call ends the rendering process. It handles any final updates to buffers, synchronizes

resources, or finalizes the frame for output.

Setting the Render Target to the Back Buffer

GraphicsContext::SetRenderTargetToBackBuffer();

After the custom rendering is completed, this function call restores the render target back to the back

buffer (i.e., the final screen output), preparing for the next frame or draw call.

This function performs rendering to a texture and draws the resulting texture as a full-screen quad. It
allows for advanced rendering effects, such as post-processing or offscreen rendering, followed by
displaying the rendered texture.

The output is rendered on the back buffer (screen), completing the frame's visual output.

Conceptual Summary

The renderScreen() function is designed to facilitate offscreen rendering onto a texture and then display
that texture on the screen as a quad. This is useful for various advanced graphics techniques like post-
processing, shadow mapping, or screen-space effects. It efficiently manages the render targets, applies

transformations, and draws both simple geometry and textured surfaces.

138

void PennyRender::MultiRenderPass(Texture renderTexture) { // not working

/* renderScreenTest(renderTexture, OutputTextures_[@], OutputRTVs_[@], OutputSRVs_[0]);
Texture tex = OutputSRVs_[0].Get();
renderToScreen_end(OutputRTVs_[0], OutputSRVs_[@0]);

renderScreenTest(renderTexture, OutputTextures_1, OutputRTVs_1, OutputSRVs_1);*/

renderScreenPass(renderTexture, OutputTextures_0, OutputRTVs_@, OutputSRVs_0); //

Texture tex = OutputSRVs_0.Get();

renderToScreen_end(OutputRTVs_0, OutputSRVs_0);

renderScreen(tex);//always has to be the last one (as its "texture" -SRV- is what gets pasted through
to the preive screen)

//renderToScreen_end(OutputRTVs_0@, OutputSRVs_0);

PennyRender: :MultiRenderPass()

Purpose

The MultiRenderPass() function is intended to execute multiple rendering passes in sequence. It handles
rendering to offscreen textures, followed by final rendering to the screen. Although currently commented
out and non-functional, the general idea is to process different effects or steps in multiple passes,

updating the output after each pass, and finally displaying the result.

Rendering the First Pass to an Offscreen Texture

renderScreenPass(renderTexture, OutputTextures_©, OutputRTVs_©, OutputSRVs_90);

This line calls renderScreenPass() to perform the first render pass. The pass renders the scene to the
texture specified by OutputTextures_©, using the corresponding render target view (OutputRTVs_©) and
shader resource view (OutputSRVs_©). This is part of an offscreen rendering technique, for post-
processing effects or intermediate results.

Getting the Texture for Further Processing

Texture tex = OutputSRVs_0.Get();

After completing the first render pass, this line retrieves the texture from OutputSRVs_© (the shader
resource view) that contains the output of the first render pass. This texture will be used in subsequent
passes or for display.

Finalizing the Render to Screen

139

renderToScreen_end(OutputRTVs_0, OutputSRVs_0);

This function call, renderToScreen_end(), finalizes the rendering for the current pass by updating the
render target views and shader resource views. It effectively marks the end of the render pass and

prepares the scene for displaying or processing further.

Rendering the Final Result to the Screen

renderScreen(tex);

This function call uses the texture (tex) from the previous render pass and renders it to the screen as a
full-screen quad. This is usually the final step in the rendering pipeline when applying post-processing

effects or displaying the final result.

Commented Out / Additional Render Passes

/*

renderScreenTest(renderTexture, OutputTextures_[@], OutputRTVs_[@], OutputSRVs_[@0]);
Texture tex = OutputSRVs_[0].Get();

renderToScreen_end(OutputRTVs_[0], OutputSRVs_[0]);

renderScreenTest(renderTexture, OutputTextures_1, OutputRTVs_1, OutputSRVs_1);
*/

Purpose:

The commented-out code represents additional render passes that were planned but are currently not
functional. These passes would render to different textures and views (OutputTextures_[0],
OutputTextures_1, etc.), and the result would then be passed through the screen render process.
These lines suggest the possibility of handling multiple intermediate render passes (e.g., different

visual effects or steps).

Effect:

The function ensures that multiple render passes are performed and that the final rendered image is
displayed on the screen. The function first renders to an offscreen texture, then processes the result,
and finally renders the processed texture to the screen.

The code hints that the function was designed for handling multiple render passes, but it is currently

incomplete or not working.

Conceptual Summary

The MultiRenderPass() function is designed to facilitate a multi-pass rendering pipeline where

intermediate results are rendered offscreen, processed, and then displayed. Although not fully functional

in its current form, this pattern is commonly used in rendering techniques like post-processing effects,

140

shadow mapping, or deferred rendering, where each pass serves a specific purpose, such as applying a
filter or calculating lighting.

The function concludes with rendering the final processed texture to the screen.

void PennyRender::renderToScreen_end(MultiResource<RenderTargetViewRef> OutputRTV, MultiResource<TextureSRVRef>
OutputSRV) {

//l/next frame

++OutputSRV;

++OutputRTV;

}

PennyRender:: renderToScreen_end(MultiResource<RenderTargetViewRef> OutputRTV, MultiResource<TextureSRVRef> OutputSRV)

Purpose

The renderToScreen_end() function is used to finalize the process of rendering to the screen by updating the render target and shader

resource view (SRV) for the next frame.

Function Overview

Incrementing the Render Target View (RTV)

++OutputRTV;

Purpose: This operation increments the Render Target View (RTV) to point to the next render target in the sequence.

Effect: This essentially prepares the system to render the next frame to a new target, moving forward in the sequence of render targets.

Incrementing the Shader Resource View (SRV)

++OutputSRV;

Purpose: Similar to the RTV, this operation increments the Shader Resource View (SRV) to the next texture in the sequence.
Effect: It ensures that the next texture resource (for example, a texture containing the result of the current frame's rendering) is used in

subsequent shader operations, typically for post-processing or any other shader-based effects.

Conceptual Summary

The renderToScreen_end() function serves as a mechanism to increment the render target and shader resource view pointers,
effectively preparing them for the next frame. This allows the system to move from one frame's output to the next frame's input

seamlessly, ensuring continuous rendering.

141

Drawing to the render target

void PennyRender::renderToScreen_init() {

//--textDesc init

TextureDesc textDesc{};

textDesc.Format = DataFormat_DEFAULT_BACKBUFFER;

textDesc.AccessFlags = ResourceAccessFlag GpuRead | ResourceAccessFlag GpuWrite;
textDesc.Type = TextureType_RenderTarget;

textDesc.Dimension = TextureDimension_Texture2D;

textDesc.Width = GraphicsContext::GetClientWidth();

textDesc.Height = GraphicsContext::GetClientHeight();

textDesc.Depth = 1;

textDesc.Mips = 1;

textDesc.Clear = ClearValue(float4(0,0,0,0));

OutputTexture.ForEach([&](auto& Texture) { Texture = ResourceFactory::CreateTextureBuffer(textDesc);

3

//create output view desc

TextureViewDesc srv{};

srv.Dimension = TextureDimension_Texture2D;
srv.ArraySize = 1;

srv.Format = DataFormat_DEFAULT_BACKBUFFER;
srv.MipLevels = 1;

srv.MipSlice = 0;

//RenderTargetDesc rtv_desc{.MipSlice = @, .PlaneSlice = 0};
//0utputRTV.ForEach([&, i = ©](auto& view) mutable -> void {view =
ResourceFactory::CreateRenderTargetView(&rtv_desc, OutputTexture[i]); i++; });

OutputRTV.ForkEach([&, i = @](auto& view) mutable -> void {view =

ResourceFactory::CreateRenderTargetView(®, OutputTexture[i]); i++; }); //the @ here will cout some

warning messages, but einar said to ignore it since it works and doesnt negatively effect anything

OutputSRV.ForEach([&, i = @](auto& view) mutable -> void {view =

ResourceFactory::CreateTextureShaderResourceView(srv, OutputTexture[i]); i++; });

142

PennyRender: :renderToScreen_init

Purpose

Initializes the output render targets and shader resource views used for rendering the final scene image

to the screen. This setup supports post-processing, multi-pass rendering, and general output-to-texture

workflows.

Texture Descriptor Setup

TextureDesc textDesc{};
textDesc.Format = DataFormat_DEFAULT_BACKBUFFER;
textDesc.AccessFlags = ResourceAccessFlag_GpuRead | ResourceAccessFlag GpuWrite;

textDesc.Type = TextureType_RenderTarget;

textDesc.Width = GraphicsContext::GetClientWidth();
textDesc.Height = GraphicsContext::GetClientHeight();

Describes a 2D texture used as a render target with GPU read/write access.
Clear colour:

Set to transparent black (0,0,0,0) for clean slate rendering.

Create Render Target Textures

OutputTexture.ForEach([&](auto& Texture) {
Texture = ResourceFactory::CreateTextureBuffer(textDesc);

s

Allocates the actual GPU texture resources based on textDesc — typically one for each

buffer frame.

Shader Resource View Descriptor Setup

TextureViewDesc srv{};

srv.Dimension = TextureDimension_Texture2D;
srv.ArraySize = 1;

srv.Format = DataFormat_DEFAULT_BACKBUFFER;
srv.MipLevels = 1;

srv.MipSlice = 0;

render pass or

Defines how the texture will be accessed in shaders — as a 2D resource with one mip level.

143

Create Render Target Views (RTV)

OutputRTV.ForEach([&, i = @](auto& view) mutable {
view = ResourceFactory::CreateRenderTargetView(@, OutputTexture[i]);
i++;

s

For each output texture, a corresponding render target view is created so it can be written to by the
GPU.
Note:

The hardcoded © might emit a warning (as noted in the comment), but is safe per developer comments.

Create Shader Resource Views (SRV)

OutputSRV.ForEach([&, i = ©](auto& view) mutable {
view = ResourceFactory::CreateTextureShaderResourceView(srv, OutputTexture[i]);
i++;

s

Creates a view that allows shaders to sample from the rendered texture (e.g., for post-processing).

Conceptual Summary

This function:

Allocates GPU render targets at screen resolution.

Sets up render target views to render into.

Sets up shader resource views to read from.

It’s foundational to enabling post-processing and effects that render from one texture and display the

result on screen or in a subsequent pass.

void PennyRender::renderToScreen_init_pass(MultiResource<TextureBufferRef> OutputTexture,
MultiResource<RenderTargetViewRef> OutputRTV, MultiResource<TextureSRVRef> OutputSRV)
{

//--textDesc init

TextureDesc textDesc{};

//textDesc.Format = renderTexture.get()->GetFormat();

textDesc.Format = DataFormat_DEFAULT_BACKBUFFER;

textDesc.AccessFlags = ResourceAccessFlag_GpuRead | ResourceAccessFlag GpuWrite;

textDesc.Type = TextureType_RenderTarget;

textDesc.Dimension = TextureDimension_Texture2D;

//textDesc.Width = renderTexture.get()->GetWidth(); //textDesc.Height = renderTexture.get() -
>GetHeight();

textDesc.Width = GraphicsContext::GetClientWidth();

144

textDesc.Height = GraphicsContext::GetClientHeight();
textDesc.Depth = 1;

textDesc.Mips = 1;

textDesc.Clear = ClearValue(float4(e, 0, 0, 0));

OutputTexture.ForEach([&](auto& Texture) { Texture = ResourceFactory::CreateTextureBuffer(textDesc);

s

//create srv disc

TextureViewDesc srv{};

srv.Dimension = TextureDimension_Texture2D;
srv.ArraySize = 1;

srv.Format = DataFormat_DEFAULT_BACKBUFFER;
srv.MipLevels = 1;

srv.MipSlice = 0;

RenderTargetDesc rtv_desc{ .MipSlice = @, .PlaneSlice = 0 };

//OutputRTV.ForEach([&, 1 = ©](auto& view) mutable -> void {view =
ResourceFactory::CreateRenderTargetView(&rtv_desc, OutputTexture[i]); i++; });

OutputRTV.ForEach([&, i = @](auto& view) mutable -> void {view =
ResourceFactory::CreateRenderTargetView(0, OutputTexture[i]); i++; });

OutputSRV.ForkEach([&, i = @](auto& view) mutable -> void {view =

ResourceFactory::CreateTextureShaderResourceView(srv, OutputTexture[i]); i++; });

PennyRender: :renderToScreen_init

Purpose

Initializes the output render targets and shader resource views used for rendering the final scene image
to the screen. This setup supports post-processing, multi-pass rendering, and general output-to-texture

workflows.

Texture Descriptor Setup

TextureDesc textDesc{};
textDesc.Format = DataFormat_DEFAULT_BACKBUFFER;
textDesc.AccessFlags = ResourceAccessFlag _GpuRead | ResourceAccessFlag _GpuWrite;

textDesc.Type = TextureType_RenderTarget;

145

textDesc.Width = GraphicsContext::GetClientWidth();
textDesc.Height = GraphicsContext::GetClientHeight();

Describes a 2D texture used as a render target with GPU read/write access.
Clear colour:

Set to transparent black (0,0,0,0) for clean slate rendering.

Create Render Target Textures

OutputTexture.ForEach([&](auto& Texture) {
Texture = ResourceFactory::CreateTextureBuffer(textDesc);

s

Allocates the actual GPU texture resources based on textDesc — typically one for each render pass or

buffer frame.

Shader Resource View Descriptor Setup

TextureViewDesc srv{};

srv.Dimension = TextureDimension_Texture2D;
srv.ArraySize = 1;

srv.Format = DataFormat_DEFAULT_BACKBUFFER;
srv.MipLevels = 1;

srv.MipSlice = 0;

Defines how the texture will be accessed in shaders — as a 2D resource with one mip level.

Create Render Target Views (RTV)

OutputRTV.ForEach([&, i = ©](auto& view) mutable {
view = ResourceFactory::CreateRenderTargetView(0, OutputTexture[i]);
i++;

s

For each output texture, a corresponding render target view is created so it can be written to by the
GPU.
Note:

The hardcoded © might emit a warning (as noted in the comment), but is safe per developer comments.

Create Shader Resource Views (SRV)

146

OutputSRV.ForEach([&, i = ©](auto& view) mutable {
view = ResourceFactory::CreateTextureShaderResourceView(srv, OutputTexture[i]);
i++;

)

Creates a view that allows shaders to sample from the rendered texture (e.g., for post-processing).

Conceptual Summary

This function:

Allocates GPU render targets at screen resolution.

Sets up render target views to render into.

Sets up shader resource views to read from.

It’s foundational to enabling post-processing and effects that render from one texture and display the

result on screen or in a subsequent pass.

void PennyRender::renderScreen(Texture renderTexture) {

SetRenderTargets_(OutputTexture,OutputRTV);

//RenderCommand: : ClearRenderTargets (OutputRTVs_0.Get().get(), 1, float4(e, 0, 0, 9));

//rendering scene
Begin();//

uint32_t Indexdatal]

{
0,1,2
3

std::vector<pen::Vertex> movedvertices = vertices_screen;

pen::InstanceData testdata;

testdata.Texturelndex = 10;

for (auto& a : movedvertices) { a.Position += float3(2.5, @, 0); }

DrawVertices(movedvertices.data(), 3, Indexdata, 3, &testdata);

pen::Vertex Quad[4] =
{

147

{float3(-1,1,0),float3(0,0,0),float2(0,0), float3(0,9, -1) 1,
{float3(-1,-1,0),float3(0,0,0),float2(0,1), float3(0,0,-1) }s
{float3(1,-1,0),float3(0,0,0),float2(1,1), float3(0,0, -1) 1
{float3(1,1,90),float3(0,0,0),float2(1,0), float3(e,0,-1) }

¥

uint32_t quadindices[6] =

{
0,1,2,2,3,0

3

testdata.TextureIndex = renderTexture->GetViewIndex();

matrix World = glm::translate(float3(-5, @, 0));

testdata.World = World * glm::translate(float3(5, @, -5)) * (90.f, 1.f, 1.f) * glm::scale(float3(9,
5, 1)); //find out proper window size later (maybe ask naman if he knows?)

testdata.ColourScale = float4(1, 1, 1, 0.9);

testdata.SpecularColor = SpecularC;

testdata.SpecularPower = SpecularPower;

testdata.SpecularWeight = SpecularWeight;

DrawVertices(Quad, 4, quadindices, 6, &testdata);

//current_instancedata = testdata;///this is where we get data for the multiple passes

End();

//end of render

GraphicsContext: :SetRenderTargetToBackBuffer();

PennyRender: :renderScreen()

The renderScreen() function is responsible for rendering the scene onto a texture and then drawing a quad
to the screen, using the specified Texture as the source for the quad. It sets up the necessary render

targets, handles the rendering of vertices and index data, and applies instance-specific transformation

and texture data before completing the rendering process.

148

Setting Render Targets

SetRenderTargets_(OutputTexture, OutputRTV);

This function call sets the render targets for the current rendering pass. OutputTexture is the texture

where the scene will be rendered, and OutputRTV is the render target view used for that texture.

Beginning the Render

Begin();

This function call starts the rendering process by preparing necessary buffers and setting up the

pipeline. It’s a prerequisite for rendering any geometry.

pen::Vertex Quad[4] = {
{float3(-1,1,0),float3(0,0,0),float2(0,0), float3(0,0,-1)},
{float3(-1,-1,0),float3(0,0,0),float2(0,1), float3(9,0,-1)},
{float3(1,-1,0),float3(0,0,0),float2(1,1), float3(e,0,-1)},
{float3(1,1,0),float3(0,0,0),float2(1,0), float3(@,0,-1)}

s

Defines the vertices of a quad, which will be rendered as a full-screen object. The quad has four

corners, with each vertex having a position (float3), a texture coordinate (float2), and a normal vector

(float3).

Defining Quad Indices

uint32_t quadindices[6] = { @0, 1, 2, 2, 3, 0 };

Defines the indices for the quad. The indices refer to the vertices in Quad[] and determine how the

vertices are connected to form two triangles (one for each half of the quad).

Setting Instance Data for Quad

testdata.TextureIndex = renderTexture->GetViewIndex();

matrix World = glm::translate(float3(-5, ©, 0));

testdata.World = World * glm::translate(float3(5, @, -5)) * (90.f, 1.f, 1.f) * glm::scale(float3(9, 5,
1));

testdata.ColourScale = float4(1, 1, 1, 0.9);

149

testdata.SpecularColor = SpecularC;
testdata.SpecularPower = SpecularPower;
testdata.SpecularWeight = SpecularWeight;

Sets the instance data (testdata) for the quad:

TextureIndex: Uses the texture's view index (renderTexture->GetViewIndex()).

World: Applies a series of transformations, including translation, rotation, and scaling to the quad.
ColourScale, SpecularColor, SpecularPower, and SpecularWeight: Additional data for shading, lighting, and

material properties (such as color scaling and specular effects).

Drawing the Quad

DrawVertices(Quad, 4, quadindices, 6, &testdata);

This call renders the quad using the vertices (Quad), indices (quadindices), and the instance data

(testdata). The quad is drawn to the screen, using the texture specified in testdata.

Ending the Render
End();

This function call ends the rendering process. It handles any final updates to buffers, synchronizes

resources, or finalizes the frame for output.

Setting the Render Target to the Back Buffer

GraphicsContext::SetRenderTargetToBackBuffer();

After the custom rendering is completed, this function call restores the render target back to the back

buffer (i.e., the final screen output), preparing for the next frame or draw call.

This function performs rendering to a texture and draws the resulting texture as a full-screen quad. It
allows for advanced rendering effects, such as post-processing or offscreen rendering, followed by
displaying the rendered texture.

The output is rendered on the back buffer (screen), completing the frame's visual output.

Conceptual Summary

The renderScreen() function is designed to facilitate offscreen rendering onto a texture and then display

that texture on the screen as a quad. This is useful for various advanced graphics techniques like post-

150

processing, shadow mapping, or screen-space effects. It efficiently manages the render targets, applies

transformations, and draws both simple geometry and textured surfaces.

void SetRenderTargets_(MultiResource<TextureBufferRef> OutputTexture,

MultiResource<RenderTargetViewRef> OutputRTV) {

TextureBarrier renderTargetBarrier{};
renderTargetBarrier.SyncBefore = SKTBD_SYNC_PIXEL_SHADING;
renderTargetBarrier.SyncAfter = SKTBD_SYNC_RENDER_TARGET;
renderTargetBarrier.AccessBefore = SKTBD_ACCESS_COMMON;
renderTargetBarrier.AccessAfter = SKTBD_ACCESS_RENDER_TARGET;
renderTargetBarrier.LayoutBefore = SKTBD_LAYOUT_COMMON;
renderTargetBarrier.LayoutAfter = SKTBD_LAYOUT_RENDER_TARGET;
renderTargetBarrier.Resource = OutputTexture.Get().get();//

renderTargetBarrier.SubresourceRange = TextureSubresourceRange();

BarrierGroup grouptoRTV(&renderTargetBarrier);

RenderCommand: :Barrier(&grouptoRTV, 1);

RenderCommand: :SetRenderTargets (OutputRTV.Get().get(), 1,
GraphicsContext: :GetDefaultDepthBuffer());

void SetRenderTargets_(MultiResource<TextureBufferRef> OutputTexture, MultiResource<RenderTargetViewRef>
OutputRTV)

Purpose

Prepares and sets the render target for rendering by:
Transitioning the texture resource to a render-target-compatible state using a barrier.
Binding the appropriate render target view (RTV) and depth buffer to the graphics pipeline.

This function ensures that the GPU is synchronized and ready to render into the target texture.

Define Texture Barrier for Layout Transition

151

TextureBarrier renderTargetBarrier{};
renderTargetBarrier.SyncBefore = SKTBD_SYNC_PIXEL_SHADING;
renderTargetBarrier.SyncAfter = SKTBD_SYNC_RENDER_TARGET;
renderTargetBarrier.AccessBefore = SKTBD_ACCESS_COMMON;
renderTargetBarrier.AccessAfter = SKTBD_ACCESS_RENDER_TARGET;
renderTargetBarrier.LayoutBefore = SKTBD_LAYOUT_COMMON;
renderTargetBarrier.LayoutAfter = SKTBD_LAYOUT_RENDER_TARGET;

renderTargetBarrier.Resource = OutputTexture.Get().get();

Ensures the output texture is transitioned from a general/common state to a state suitable for render
target usage.
Why It’s Important:

DirectX 12-style explicit graphics APIs require manual state transitions to ensure correct GPU access

behavior.

Apply the Barrier

BarrierGroup grouptoRTV(&renderTargetBarrier);

RenderCommand: :Barrier(&grouptoRTV, 1);

Wraps the barrier into a group and submits it, forcing the transition on the GPU before the next draw

calls.

Set the Render Target and Depth Buffer

RenderCommand: : SetRenderTargets (OutputRTV.Get().get(), 1, GraphicsContext::GetDefaultDepthBuffer());

Binds the specified render target (RTV) and the default depth buffer as active targets for rendering.

Conceptual Summary

This function:
Ensures the render target texture is in the right GPU state.
Binds it for rendering.

Enables subsequent draw calls to properly output to the desired texture.

It’s a critical utility for frame rendering, post-processing passes, and any render-to-texture workflows.

void PennyRender::MultiRenderPass(Texture renderTexture) { // not working

/* renderScreenTest(renderTexture, OutputTextures_[@], OutputRTVs_[0], OutputSRVs_[0]);
Texture tex = OutputSRVs_[0].Get();
renderToScreen_end(OutputRTVs_[@], OutputSRVs_[0]);

152

renderScreenTest(renderTexture, OutputTextures_1, OutputRTVs_1, OutputSRVs_1);*/

renderScreenPass(renderTexture, OutputTextures_@, OutputRTVs_@, OutputSRVs_0); //

Texture tex = OutputSRVs_0.Get();

renderToScreen_end(OutputRTVs_0, OutputSRVs_0);

renderScreen(tex);//always has to be the last one (as its "texture" -SRV- is what gets pasted through
to the preive screen)

//renderToScreen_end(OutputRTVs_0@, OutputSRVs_0);

PennyRender: :MultiRenderPass()

Purpose

The MultiRenderPass() function is intended to execute multiple rendering passes in sequence. It handles
rendering to offscreen textures, followed by final rendering to the screen. Although currently commented
out and non-functional, the general idea is to process different effects or steps in multiple passes,

updating the output after each pass, and finally displaying the result.

Rendering the First Pass to an Offscreen Texture

renderScreenPass(renderTexture, OutputTextures_©, OutputRTVs_©, OutputSRVs_9);

This line calls renderScreenPass() to perform the first render pass. The pass renders the scene to the
texture specified by OutputTextures_0, using the corresponding render target view (OutputRTVs_@) and
shader resource view (OutputSRVs_@). This is part of an offscreen rendering technique, for post-
processing effects or intermediate results.

Getting the Texture for Further Processing

Texture tex = OutputSRVs_0.Get();

After completing the first render pass, this line retrieves the texture from OutputSRVs_© (the shader
resource view) that contains the output of the first render pass. This texture will be used in subsequent
passes or for display.

Finalizing the Render to Screen

renderToScreen_end(OutputRTVs_0, OutputSRVs_0);

153

This function call, renderToScreen_end(), finalizes the rendering for the current pass by updating the
render target views and shader resource views. It effectively marks the end of the render pass and

prepares the scene for displaying or processing further.

Rendering the Final Result to the Screen

renderScreen(tex);

This function call uses the texture (tex) from the previous render pass and renders it to the screen as a
full-screen quad. This is usually the final step in the rendering pipeline when applying post-processing

effects or displaying the final result.

Commented Out / Additional Render Passes

/*

renderScreenTest(renderTexture, OutputTextures_[@], OutputRTVs_[@], OutputSRVs_[0]);
Texture tex = OutputSRVs_[0].Get();

renderToScreen_end(OutputRTVs_[@], OutputSRVs_[0@]);

renderScreenTest(renderTexture, OutputTextures_1, OutputRTVs_1, OutputSRVs_1);
*/

Purpose:

The commented-out code represents additional render passes that were planned but are currently not
functional. These passes would render to different textures and views (OutputTextures [0],
OutputTextures_1, etc.), and the result would then be passed through the screen render process.
These lines suggest the possibility of handling multiple intermediate render passes (e.g., different

visual effects or steps).

Effect:

The function ensures that multiple render passes are performed and that the final rendered image is
displayed on the screen. The function first renders to an offscreen texture, then processes the result,
and finally renders the processed texture to the screen.

The code hints that the function was designed for handling multiple render passes, but it is currently

incomplete or not working.

Conceptual Summary

The MultiRenderPass() function is designed to facilitate a multi-pass rendering pipeline where
intermediate results are rendered offscreen, processed, and then displayed. Although not fully functional
in its current form, this pattern is commonly used in rendering techniques like post-processing effects,
shadow mapping, or deferred rendering, where each pass serves a specific purpose, such as applying a
filter or calculating lighting.

The function concludes with rendering the final processed texture to the screen.

154

void PennyRender::renderToScreen_end(MultiResource<RenderTargetViewRef> OutputRTV, MultiResource<TextureSRVRef>
OutputSRV) {

//l/next frame

++OutputSRV;

++OutputRTV;

}

PennyRender:: renderToScreen_end(MultiResource<RenderTargetViewRef> OutputRTV, MultiResource<TextureSRVRef> OutputSRV)

Purpose

The renderToScreen_end() function is used to finalize the process of rendering to the screen by updating the render target and shader

resource view (SRV) for the next frame.

Function Overview

Incrementing the Render Target View (RTV)

++OutputRTV;

Purpose: This operation increments the Render Target View (RTV) to point to the next render target in the sequence.

Effect: This essentially prepares the system to render the next frame to a new target, moving forward in the sequence of render targets.

Incrementing the Shader Resource View (SRV)

++OutputSRV;

Purpose: Similar to the RTV, this operation increments the Shader Resource View (SRV) to the next texture in the sequence.
Effect: It ensures that the next texture resource (for example, a texture containing the result of the current frame's rendering) is used in

subsequent shader operations, typically for post-processing or any other shader-based effects.

Conceptual Summary

The renderToScreen_end() function serves as a mechanism to increment the render target and shader resource view pointers,
effectively preparing them for the next frame. This allows the system to move from one frame's output to the next frame's input

seamlessly, ensuring continuous rendering.

void PennyRender::PennyBoardIMGUI_PreveiwScreen() {
//-- barriers to tye/sync render target
TextureBarrier renderTargetBarrier{};

renderTargetBarrier.SyncBefore = SKTBD_SYNC_RENDER_TARGET;

155

renderTargetBarrier.SyncAfter = SKTBD_SYNC_PIXEL_SHADING;
renderTargetBarrier.AccessBefore = SKTBD_ACCESS_RENDER_TARGET;
renderTargetBarrier.AccessAfter = SKTBD_ACCESS_COMMON;
renderTargetBarrier.LayoutBefore = SKTBD_LAYOUT_RENDER_TARGET;
renderTargetBarrier.LayoutAfter = SKTBD_LAYOUT_COMMON;
renderTargetBarrier.Resource = OutputTexture.Get().get();

renderTargetBarrier.SubresourceRange = TextureSubresourceRange();//

BarrierGroup grouptoRTV(&renderTargetBarrier);
RenderCommand: :Barrier(&grouptoRTV, 1);
//--

ImGui: :SeparatorText("Preveiw screen");

ImGui::SliderInt("Screen size", &previewscreenSize, 1, 4, "Screen size / %d%");

ImGui: :SetItemTooltip("Preveiw screen size, Fullsize/ n");

//preveiw screen

ImGuiIO& io = ImGui::GetIO();

ImTextureID my_tex_id = OutputSRV.Get()->GetImTextureID();//turning srv to a usable ImTextureID - for

preview screen
//move to next frame

renderToScreen_end(OutputRTV, OutputSRV);

float my_tex w = (float)1366 / previewscreenSize;
float my_tex_h
{

(float)768 / previewscreenSize;

static bool use_text_color_for_tint = false;

ImVec2 uv_min = ImVec2(@.0f, 0.0f); // Top-left
ImVec2 uv_max = ImVec2(l.0f, 1.0f); // Lower-right

ImVec4 tint_col = use_text_color_for_tint ? ImGui::GetStyleColorVec4(ImGuiCol_Text) :

ImVec4(1l.0f, 1.0f, 1.0f, 1.0f); // No tint
ImVec4 border_col = ImGui::GetStyleColorVec4(ImGuiCol Border);

ImGui: :Image(my_tex_id, ImVec2(my_tex_w, my_tex_h), uv_min, uv_max, tint_col, border_col);

ImGui: :SetItemTooltip("Preveiw screen;\nshow the effected in development before adding to the

proper screen/view");

}

PennyRender: :PennyBoardIMGUI_PreveiwScreen()

Purpose

156

This function prepares and displays a preview of the final rendered output texture inside an ImGui
window. It ensures proper GPU synchronization (using a barrier) before showing the texture, and provides

basic UI controls to scale the preview.

Barrier: Transition the Render Target to Common State

TextureBarrier renderTargetBarrier{};
renderTargetBarrier.SyncBefore = SKTBD_SYNC_RENDER_TARGET;
renderTargetBarrier.SyncAfter = SKTBD_SYNC_PIXEL_SHADING;
renderTargetBarrier.AccessBefore = SKTBD_ACCESS_RENDER_TARGET;
renderTargetBarrier.AccessAfter = SKTBD_ACCESS_COMMON;
renderTargetBarrier.LayoutBefore = SKTBD_LAYOUT_RENDER_TARGET;
renderTargetBarrier.LayoutAfter = SKTBD_LAYOUT_COMMON;
renderTargetBarrier.Resource = OutputTexture.Get().get();
renderTargetBarrier.SubresourceRange = TextureSubresourceRange();
BarrierGroup grouptoRTV(&renderTargetBarrier);

RenderCommand: :Barrier(&grouptoRTV, 1);

Ensures the output texture is no longer being written to as a render target and is now in a state where

it can be read as a shader resource for preview.

ImGui UI Controls and Preview Header

ImGui::SeparatorText("Preveiw screen");
ImGui::SliderInt("Screen size", &previewscreenSize, 1, 4, "Screen size / %d%");

ImGui::SetItemTooltip("Preveiw screen size, Fullsize/ n");

Provides a user interface to scale the preview size using a slider.
previewscreenSize controls how large the preview appears relative to full size (1 = full size, 4 =

quarter size).

Get Texture ID and Advance Frame

ImGuiIO& io = ImGui::GetIO();
ImTextureID my_tex_id = OutputSRV.Get()->GetImTextureID(); // Get a usable texture ID for ImGui

renderToScreen_end(OutputRTV, OutputSRV); // Advance resource pointer to next frame

Converts the Shader Resource View into a format (ImTextureID) usable by ImGui for image display.

Also advances to the next resource in the MultiResource pool to handle double/triple buffering.

Display the Texture as an ImGui Image

157

float my_tex_w = (float)1366 / previewscreenSize;

float my_tex_h (float)768 / previewscreenSize;

ImVec2 uv_min = ImVec2(@.0f, 0.0f); // Top-left

ImVec2 uv_max = ImVec2(1.0f, 1.0f); // Bottom-right

ImVec4 tint_col = ImVec4(l.0f, 1.ef, 1.0f, 1.0f); // No tint
ImVec4 border_col = ImGui::GetStyleColorVec4(ImGuiCol_Border);

ImGui::Image(my_tex_id, ImVec2(my_tex_w, my_tex_h), uv_min, uv_max, tint_col, border_col);
ImGui::SetItemTooltip("Preveiw screen;\nshow the effected in development before adding to the proper

screen/view");

Displays the rendered texture inside the ImGui UI window as a resizable image.
Uses ImGui::Image() to show the texture and adds a helpful tooltip explaining the purpose of the preview

screen.

Conceptual Summary

Ensures GPU synchronization before accessing the texture as an SRV.
Provides a simple and flexible UI element in ImGui to preview the rendering output.
Helps developers test and debug visual effects in isolation before applying them to the final screen

output.

Misc Functions

wil hwedE Ffect 586 lisk, Seesdiftect sftect) {

158

savedt Hact List, off

' Savediame , ShaderToggles Effoctin
SavedE ffact offect;

ol luit Savellome ~ Suveo)

effect Lffectinlse;

effe creen buff;
wlhlml o il bl b
effect c . - vignet buff;
wllw! | = poslerioe bl
effoct.bloom buff - bloom buff

el b lommd_basl f = hiliwm?

effoct . blortawuf rGouluffor buff
ELLLTR I P el M T bl £y
effect lized buff - chrosastyl
I

effect

AL

effoct pixel buff « pixel buff;

n_ScreenBuffer effect.screen_buff;
m_ScanlineBuffer = effect.scanline_butf;
m VignettingBuffer = effect,vignet buff;

n_PostorizeBuffor -~ offect.posterizeo_buff;

n_BloomBluffer - effect.bloom buff;
m_Bloom2Buffer = effect.bloom2 buff;
m BlurGauBuffer - effect.blurGauuffer buff;

n_ChromaTrucBuffer = effect.chromaTrue_buff;

n_ChromaStylizedBuffor effoct.chromaStylized_buf

m_ColourGradBuffer = effect.colourGrad buff;

n_twbossBuffer effect.emboss_buff;

m_GlassBuffer = effect.gloass _buff;

n_PixelBufter = eftfect.pixel butt;

159

entState(DEFAULT_STATE);
n_ScreenBuffer

m ScanlineBuffer = Sca
n_VignettingBuffer -

m PosterizeBuffer -

n BloomBuffer -

n_Bloom2Buffer = Bl

n_BlurGauBuffer

n_ChromaTrueBuffer = Chro
n ChromaSlylizedBuffer
n_ColourGradBuffor olo
n EmbossBuffer = Eml

n_GlassBuffer = Gl

n_PixelBuffer = Pix

adeorToggles effect

CLURRENT_STATE

m_Pipeline dirty

DEFALLT_STA

160

REPUT_STATF ; | ;

The Shader library

Structs

Quick sentence about the structs.

ndet STRUCTS_Penny?

fdefine STRUCTS_Penny?

161

ScreenPara

nat? screensize

1t PushData_instanceNo;

int padding;

scanlinePara

screensize_;
LineThickness_;

DimmedFactor_;

transferPower_;
vertical_;
PushData_instanceNo;

padding;

t vignettingPara

screenSize ;

padding;

innerRadius;
outerRadius;
opacity;

PushData_instanceNo;

t posterizePara

floatd step areas;

uint PushData instanceNo;

162

bloomPara

PushData instanceNo;
width;
at angleSteps;

at radiusSteps;

rat ampFactor;

padding;

struct bloom2Para

PushData instanceho;

ampFactor;
threshold;

paddingd;

blurGauPara

Luminance;
screensize ;

padding®;
I welight[2];

texscrMultiplier[a];

ChromaTruePara

PushData instanceNo;
screenSize ;

at aberrationFactor;

aberrationFactor_x;

aberrationFactor_y;

padding;

163

ChromasStylizedPara

pushData_instanceNo;

at3 paddinge;

chromaticweightsi;
1 chromaticweights2;
chromaticoffseti;

1 chromaticOffset2;

colourGradPara

int PushData instanceNo:

3 paddinge;

1 startColor;

paddingl;

loat3 endColor;

loat paddingz;

EmbossPara

paddingd;

preyscale;
width :
height_;

paddingl;

glassPara

int PushData_instanceho;

screenSize ;

panelsize;

at? padding;

164

t pixelPara

t PushData_instanceNo;
screensize_;

pixelsize;

padding;

Shaders

Quick sentence about the library.

165

Scanline Pixel Shader

> Pushliata { spaced);
StructuredBuf fer<Instancelata) Iastances r(t0, spaced);

aramet J terdb2, spaced)

LineThickness = Parsmeters. | ineThickness

D e Paramaters DimsedFactor ;)

transferPoser = Parsmeters. transferfouer
cal L -wertical

e = Parameters.screenSize ;

tancemio]. text

toxtural

xType = (pixelX / LineThickee

yiype = (pixel¥ / LineThickness)

((vertical & slype == { (Iverticel B4 ylype

* (transferPosor * Disme

or * Dimeedfactor;

mredf actor)

Vignetting Pixel Shader

bemedF actor)));

166

i ptarteap] T

(g _sampler, input

radius

posterize Pixel Shader

167

WL Trin b s b | Parsd

R sanpler, input_uv))|

steq_areas_h;

bloom Pixel Shader

168

CConstantsy> Pushiata

uredbuf fercInstancedatar Instances

(blocafaras bloosursbuff

ec[PushData. in

Lptoctioap| Inte

- arsBuffer width

blocaluratiaf fur . wyle
foer rodi

wsSteps = bloosd arab sSteps
b losel ar oy ang ac toe

o = tewtur
o d g Lo

sccvmi] atedColn:

width),

width)

maaRedius alaRadius

LotalSteps

Bloom 2 Pixel Shader

169

fStructs.hls1i™

ucts_2_hlsli

te g sampler :

Pl acos(-1)

Constanth Constants> PushData : register

StructuredBufferd Instancelata®> Instances

ffer<bloom?Para> bloom2ParaBuffer :

1 main{VertexOutput

input)

(b8, spaced);

register(t®, spaced):

ured

oat ampFactor
threcshold
1 bloomColour
{ (bloomColour_x

bloomCol:

outputPixel

Blur Gau Para

ResourcelescriptorHeap| Instances|PushData. instanceNo] . textureIDX] ;

bloom?ParaButfer.ampFactor;

bloom2ParaBuffer . threshold;

= textured. ple{g sampler, input.uv);

<= thre 1d) || {bloceColour.y <= threshold) || (bloomColour.

textured.s efE ~, input.uv);

170

il i g

Chroma True Pixel Shader

Sl i p L e |

mual 14 pl s [2

sl tiplice[a

171

t Constants> PushData ‘ (b, space@);
ruc turedBul fercinstoncelatad> Instances |

<OhromaTruefara> Chromalru

dutput in

ta. instancelo

reebescripton

sherrationkac » TrueParaBuffer . aberrationf actor;

aherratlonFoctor hromaTrueParauffor sberrat ionFact

sherrat lonl actor y Chromalroelaralul for sherrat lonk actor

abervat oot &

aberration

rColowe, glolowe, blolowe;

sberrationfactor * dis

aberrationFactor *

fonfactor * distx

lonFactor * dist

textured sawpler, rColowr);
textured. S wler, gColour);

textured yavpler, bolowr);

Chroma Stylized Pixel Shader

172

<Constants> PushData ! (b0,
S LuredBul fer<Tastane sDul x> Taslancws : register (18, spaced);

ta ChromaStylizedPara> CheomaStyllzedPacaBuf for

(VertexDutput input)

) textured = ResourceDescriptortesp| Tnstances[PushData. instancelio] . texture TDX] ;

chromatickeightsl - ChromaStylizedParabuffer. chromaticMeightsl;

chromaticWeights2 ChromaStylizedParaBuffer.chromoticMeights2;

chromaticOf fsetl ChromaStyli zes Buf fer. chromat icOf fsetl;

thromet icOM{sel? = ChronmaStylisedPacaBul Ter chrossl icOf Isel 2;

lor_chormal
olor chorma2

vColor_chorma

#; i < chromaticof

vColor chormal += chromaticNeightsl * texturc®d. {g sampler, input.uv + chroma

1

vColor_chormal Color_chormal / chrometicOffsetl.

; 1 < chromaticOffset2.
vlolor chormal += chromaticWeights2 * texture®.

wle(g sampler, input.uv + chromaticOffset2. x

w_chorma? / chromsticOffset2

vColoe_ch slor_chorwal ;

Colour Grad Pixel Shader

173

antBuffer<Constants> PushData : register(b®, spaced);

StrucluredBufl fer<InstanceDals> Ins : register(10, spaced);

[Ter<colourGradPara> colourGradParsBuffer : register(b2, spaced);

(VertexOulpul inpul)

startColor colourGradParaBuffer. startColor;

endColor = colourGradParaBul fer.endColor;

textured ResourceDescriptorteap] Instances[PushData.instanceNo]

texturelolour toxture®.Sample(g_sampler, input.uv);

lum = (textureColour.r + LextureColour.g + LextureColour.b) /

TunComp 8 - lum;

i modColour;

modColour.r Tum startColor.r + lusComp endColor.r;

modColour.g lum startColor.g + lusComp endColor.g;

modColour.b lum * startColor.b + lumComp * endColor.h;

modColour.a 1;
result textureColour * modColour;
resultlum = (resull.r 4 resull.g + resull.b) /

result *< Jum / resultium;

result;

Emboss Pixel Shader

textureIDX];

174

{g_sompler,

sompler,
& campler, imput_uwv
spmpler, input.uw
tawtisred_ Samp & 7 LT

te: Sampla(imput.uwv

glass Pixel Shader

175

') <Comtants> PushOats

StructuredBuff InstanceDatar Inst

<gla

in(Vertes

siuffer. screenSize ;

glaseParabit far . panelSize . x}

srabuffer.panelSize.y;

tances|Push

yhubpixel (ing

* Subpizel / width, in height 1;

of frrt
tea2. input.

input o

Pixelate Pixel Shader

176

sampler @ regl

s(-1)

Constants> Pus E 1st bf, spaced);

Instancelata> 2 = o 18,

ritexfutput input)

xelParaButfer.pixelSize;

sat width

hi

nt pixelX = input.uv.x * width_;

int pixelY input.uv.y * height ;

= ((pixelx / pixelSize) * pixelsi

ixelSize) ® pixelSize)

sinstancelo] .t

cbure IDK] ;

177

Default shader

MP2083 /CMP203_Shade Structs.hlsli”

» Space@);
r(t0, space®);

fer<ScreenPara> para : r (b2, space®);

main(VertexOutput input)

D texture = ResourceDescriptortleap[Instances[PushData.instanceNo].texturelDX];

! ¢® = texture.S5a _sampler, input.uv);

cB;

Vertex shader

This was originally from the 203 extenders

178

	Table of Figures
	Table of Tables
	Acknowledgements
	Abstract
	Abbreviations, Symbols and Notation
	Chapter 1 Introduction
	1.1. Research Question
	1.2. Project overview
	1.3. Project Aims
	1.4. Scope
	1.4.2. What It Does Not Include:
	1.4.3. Scope Changes:

	1.5 Hypothesis

	Chapter 2 Literature Review
	2.1. Educational Use
	2.2. Shaders
	2.1. The Basics of Shaders
	2.2. Post-Processing Shaders
	2.3. Shader Libraries

	2.3. Render Pipelines
	2.3.1. Renderers and the Rendering Pipeline
	2.3.2. Structure of the Rendering Pipeline
	2.3.3. Advanced and Modular Pipelines
	2.2.4. Educational and Practical Implications

	2.5. Tool Design
	2.5.2. Usability and Accessibility in Game Development Tools
	2.5.3. Tools as Cultural and Creative Enablers
	2.5.4. Historical Perspectives: From CAD to Collaborative Design
	2.5.6. Prototyping

	2.7. Conclusion - Tying everything together

	Chapter 3 Methodology
	3.1. Planning
	3.1.1. Main project pieces
	3.1.2. Research and Development
	3.1.3. Tool Architecture
	3.1.4. Implementation Phases
	3.1.5. Documentation and Tutorials

	3.2. Implementing
	3.2.1. DirectX11 Prototype
	3.2.1.1. Prototyping the GUI
	3.2.1.2. Prototyping Shaders

	3.2.2. Transferring Prototype to Skateboard / DirectX12
	3.2.2.1. The tools UI
	3.2.2.2. Renderer
	3.2.2.3. Adjusting Shaders

	3.3. Testing
	3.5. Documentation

	Chapter 4 Results & Discussion
	4.1 Introduction
	4.2 Pre-Tool – Initial Understanding of Concepts
	4.3 Post-Tool - Outcomes and Learning Improvements
	4.4 Tool Usability and User Experience
	4.5 Interpretation of Findings
	4.6 Comparison with Existing Research
	4.7 Implications for Education and Tool Design
	Educational Practices
	Tool Design Considerations

	4.8 Limitations and Challenges
	Tool Limitations
	Methodological Limitations

	4.9 Conclusion

	Chapter 5 Conclusion and Future Work
	5.1. Conclusion
	5.1.1. Summary of Key Findings
	Main Results:
	Tool’s Contribution to Education:

	5.1.2. Implications for Educational Practices
	5.1.3. Limitations of the Study
	Tool Limitations:

	5.1.4. Final Reflection

	5.2. Future Work
	5.2.1. Improving the Tool
	More Advanced Shader and Coding Features

	5.2.2. Exploring New Educational Approaches
	Gamification and Interactive Learning
	Collaborative Learning and Peer Feedback

	5.2.3. Further Research Directions
	Educational Tool Evaluation

	5.2.4. Conclusion of Future Work

	List of References
	Bibliography
	Appendices

